A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The ...A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.展开更多
A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(C...A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.展开更多
1, 3-Dimethyluracil (DMU) in phosphate buffered-saline (PBS, pH=8) was irradiated by a medium pressure mercury lamp (MPML) and produced a novel compound C6H9N2O6P. The composition and structure of the compound h...1, 3-Dimethyluracil (DMU) in phosphate buffered-saline (PBS, pH=8) was irradiated by a medium pressure mercury lamp (MPML) and produced a novel compound C6H9N2O6P. The composition and structure of the compound has been identified by elemental analysis, EIMS, UV, IR, ^1H and ^31P-NMR.展开更多
The photolysis of uracil in phosphate-buffered saline (PBS, pH 8.0) under the irradiation pf medium pressure mercury lamp (MPML) leads to the production of a novel compound C4H5N2O6P. The composition and structure of ...The photolysis of uracil in phosphate-buffered saline (PBS, pH 8.0) under the irradiation pf medium pressure mercury lamp (MPML) leads to the production of a novel compound C4H5N2O6P. The composition and structure of the compound has been identified by elemental analysis, EI-MS, UV, IR, H-1, C-13, P-31-NMR.展开更多
The photolysis of thymine in phosphate-buffered saline (PBS, pH 8.0) under the irradiation of medium pressure mercury lamp (MPML) produces a novel compound C5H7N2O6P. The composition and structure of the compound hav...The photolysis of thymine in phosphate-buffered saline (PBS, pH 8.0) under the irradiation of medium pressure mercury lamp (MPML) produces a novel compound C5H7N2O6P. The composition and structure of the compound have been identified by elemental analysis, EI-MS, UV, IR, 1H, 13C, 31P-NMR.展开更多
(Pb,Sr)TiO3 (PST) thin film are fabricated by RF magnetron sputtering on Si-buffered Pt/Ti/SiO2/Si substrates with different buffer layer deposition time. Surface morphologies of the buffer layer indicate an improvi...(Pb,Sr)TiO3 (PST) thin film are fabricated by RF magnetron sputtering on Si-buffered Pt/Ti/SiO2/Si substrates with different buffer layer deposition time. Surface morphologies of the buffer layer indicate an improving surface roughness and larger grains with the prolongation of sputtering time. Deposition of PST thin films shows excellent surface fluctuation filling ability to improve the surface roughness of substrates. PST surface morphologies exhibit apparently different grain forms according to the preparation time durance of buffer layer.展开更多
文摘A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.
基金Project(2012GS430203)supported by Science and Technology Program for Public Wellbeing,ChinaProject(51504299)supported by the National Natural Science Foundation of ChinaProject(2015WK3016)supported by Science and Technology Program of Hunan Province,China
文摘A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.
基金The project was supported by the National Natural Science Foundation of China(No:20171038).
文摘1, 3-Dimethyluracil (DMU) in phosphate buffered-saline (PBS, pH=8) was irradiated by a medium pressure mercury lamp (MPML) and produced a novel compound C6H9N2O6P. The composition and structure of the compound has been identified by elemental analysis, EIMS, UV, IR, ^1H and ^31P-NMR.
基金the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities,the Key Research Program of Chinese Academy of Sciences
文摘The photolysis of uracil in phosphate-buffered saline (PBS, pH 8.0) under the irradiation pf medium pressure mercury lamp (MPML) leads to the production of a novel compound C4H5N2O6P. The composition and structure of the compound has been identified by elemental analysis, EI-MS, UV, IR, H-1, C-13, P-31-NMR.
基金supported by the National Natural Science Foundation of China (No:20171038)
文摘The photolysis of thymine in phosphate-buffered saline (PBS, pH 8.0) under the irradiation of medium pressure mercury lamp (MPML) produces a novel compound C5H7N2O6P. The composition and structure of the compound have been identified by elemental analysis, EI-MS, UV, IR, 1H, 13C, 31P-NMR.
文摘(Pb,Sr)TiO3 (PST) thin film are fabricated by RF magnetron sputtering on Si-buffered Pt/Ti/SiO2/Si substrates with different buffer layer deposition time. Surface morphologies of the buffer layer indicate an improving surface roughness and larger grains with the prolongation of sputtering time. Deposition of PST thin films shows excellent surface fluctuation filling ability to improve the surface roughness of substrates. PST surface morphologies exhibit apparently different grain forms according to the preparation time durance of buffer layer.