Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate...Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas.展开更多
A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum ...A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.展开更多
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ...In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.展开更多
[Objective] The aim was to select and identify inorganic phosphorus-dissolving bacteria in rhizosphere of Trifolium repens,and to research related effects of growth promotion.[Method] Phosphate solubilizing bacteria i...[Objective] The aim was to select and identify inorganic phosphorus-dissolving bacteria in rhizosphere of Trifolium repens,and to research related effects of growth promotion.[Method] Phosphate solubilizing bacteria in rhizosphere of Trifolium repens in Guizhou Province were separated and selected to determine its ability of phosphate solubilizing and IAA secretion,and growth promotion effect.[Result] Phosphate solubilizing bacteria were multiple and varied in rhizosphere of Trifolium repens;solubilizing quantities of phosphorus from calcium phosphate by RW2,RW6 and RW18 were 337.39,447.45 and 462.03 μg/ml;solubilizing quantity was none of linear relation with organic acid;RW2 proved the one secreted most IAA at 12.69 μg/ml,followed by RW18 at 12.34 μg/ml;the three strains were all of Leclercia sp.,but were of none pathogenicity for seedlings of Trifolium repens,instead,a kind of growth promotion was found.Detailedly,RW18 was most effective in growth promotion for Trifolium repens and plant height,root length and weight,and aboveground biomass increased by 110.98%,9.17%,46.17% and 2% respectively.Hence,RW18 is of great potential.[Conclusion] The research provides scientific references for developing phosphate solubilizing bacteria and compound inoculation and develops a novel way to relieve barren soils,save phosphorus resource,reduce environment pollution,and guarantee sustainable development of agriculture and animal husbandry.展开更多
The phylogenetic diversity of phosphate solubilizing bacteria (PSB) distributed in P-rich soils in the Dianchi Lake drainage area of China was characterized, and the tricalcium phosphate (TCP) solubilizing activit...The phylogenetic diversity of phosphate solubilizing bacteria (PSB) distributed in P-rich soils in the Dianchi Lake drainage area of China was characterized, and the tricalcium phosphate (TCP) solubilizing activities of isolated PSB were determined. Among 1 328 bacteria isolated from 100 P-rich soil samples, 377 isolates (28.39% of the total) that exhibited TCP solubilization activity were taken as PSB. These PSB showed different abilities to solubilize TCP, with the concentrations of solubilized P in bacterial cultures varying from 33.48 to 69.63 mg L^(-1). A total of 123 PSB isolates, with relatively high TCP solubilization activity (〉 54.00 mg L^(-1)), were submitted for restriction fragment length polymorphism (RFLP) analysis, which revealed 32 unique RFLP patterns. Based on these patterns, 62 representative isolates, one to three from each RFLP pattern, were selected for 16S rRNA sequencing. Phylogenetic analysis placed the 123 PSB into three bacterial phyla, namely Proteobacteria, Aetinobacteria and Firmicutes. Members of Proteobacteria were the dominant PSB, where 107 isolates represented by 26 RFLP patterns were associated with the genera of Burkholderia, Pseudomonas, Acinetobacter, Enterobacter, Pantoea, Serratia, Klebsiella, Leclercia, Raoultella and Cedeeea. Firmicutes were the subdominant group, in which 13 isolates were affiliated with the genera of Bacillus and Brevibacterium. The remaining 3 isolates were identified as three species of the genus Arthrobacter. This research extends the knowledge on PSB in P-rich soils and broadens the spectrum of PSB for the development of environmentally friendly biophosphate fertilizers.展开更多
This study investigates the nitrogen (N), phosphorous (P), and potassium (K) contents in raw biomasses of Camellia sinensis, Gliricidia sepium, and Musa acuminata. Therein, the highest N and P content was seen in Came...This study investigates the nitrogen (N), phosphorous (P), and potassium (K) contents in raw biomasses of Camellia sinensis, Gliricidia sepium, and Musa acuminata. Therein, the highest N and P content was seen in Camellia sinensis 116.80 ± 0.08 mg and 66.00 ± 0.14 mg respectively. The highest K content (106.80 ± 0.04 mg) was observed in Musa acuminata. Next, all three types of plant materials were allowed to decompose in water for 3 weeks, and a sample from each was analyzed for NPK after the 1st, 2nd, and 3rd week during decomposition. A significant increase in the release of N, P, and K by the Camellia sinensis to water (P Musa acuminate were not significantly changed (P > 0.05) over time. The ratio for N:P:K was calculated for raw biomass samples and decomposed samples to find the best fitting N:P:K ratio to apply to young tea plants as organic fertilizers. In addition to that, the microbial insight of these organic compounds was analyzed by observing how microbial population increased with decomposition by the enumeration of the total microbial count. A considerable increment in total microbial count was observed up to 3.28 × 10<sup>6</sup>, 1.21 × 10<sup>10</sup>, 2.18 × 10<sup>8</sup>, and 6.49 × 10<sup>7</sup> CFU/ml for Camellia sinensis, Gliricidia sepium, Musa accuminata (leaves), and Musa accuminata (trunk) respectively. The presence of phosphate solubilizing bacteria (PSB) and nitrogen solubilizing bacteria (NSB) throughout the decomposition period was confirmed by their growth on NBRIP and a modified nutrient medium that was specifically designed for the identification of ammonifiers respectively. Prepared fertilizer samples were applied to young tea plants that were grown in the Mawanella area in Sri Lanka (7°15'12.42"N 80°26'47.62"E) and according to the results, it is clear that fertilizer mixture 1 (N:P:K, 10:5:10, tea dust + Gliricidia + banana trunk) and fertilizer mixture 2 (N:P:K, 10:5:10, tea dust + Gliricidia + banana leaves) has the potential to increase the growth of young tea plants.展开更多
Biogeochemical processes are fundamental to sustain the ecosystem in subsurface caves, but to date they are still far from well understood. To investigate micro-bially mediated phosphorus and zinc cycles, we isolated ...Biogeochemical processes are fundamental to sustain the ecosystem in subsurface caves, but to date they are still far from well understood. To investigate micro-bially mediated phosphorus and zinc cycles, we isolated three bacterial strains from the dripping water in Heshang cave, central China, identified as Exiguobacterium aurantiacum E11, Pseudomonas fluorescens P35, and Pseu- domonas poae P41, respectively. Microbial capabilities in the dissolution of phosphorus-containing minerals were tested with zinc phosphate (Zn3(PO4)2) in batch culture at 30~C. A spectrophotometer, atomic absorption spectrum, and scanning electronic microscopy were used to measure the microbial growth, soluble Zn(II) concentration, and to observe the morphology of Zn3(PO4)2 before and after microbial dissolution. P. fluorescens and P. poae, the well- known phosphorus solubilizing bacteria (PSB), are observed to solubilize Zn3(PO4)2 with an efficiency of 16.7% and 17.6%, respectively. To our knowledge, E. aurantiacum is firstly reported in this study to dissolve phosphorous-containing minerals with a higher efficiency of 39.7%, expanding our understanding about the ubiquitous occurrence of PSB in natural environments. Aqueous Zn(II) concentration positively correlates with H+ activity, confirming the presence of acidification mechanisms widely exploited by PSB. Few itching pits were observed on the surface of Zn3(PO4)2 after microbial dissolution, inferring that microbial dissolution is not always associated with the direct contact with minerals. Even though the soluble Zn(II) concentration reached up to 370 mg/L in the system inoculated with E. aurantiacum Ell, inhibition of microbial growth was not detected by spectrophotometer. Our laboratory data revealed the importance of microbially-mediated P and Zn cycles in the subsurface ecosystem.展开更多
With the aim to apply the beneficial microorganisms to peanut (groundnut (Arachis hypogaea)) growing in sandy soil of Binhdinh province in Vietnam, the paper was conducted to study the isolation, selection of N-fi...With the aim to apply the beneficial microorganisms to peanut (groundnut (Arachis hypogaea)) growing in sandy soil of Binhdinh province in Vietnam, the paper was conducted to study the isolation, selection of N-fixing, phosphate, potassium solubilizing and slime producing microorganism from sandy soil and peanut root samples, and evaluate the capability of selected isolates to adapt to the sandy soil condition. The isolation and selection of beneficial microbes were based on the biological activity of isolates, which was determined by acetylene reduction assay and nodulation on the peanut for Rhizobium spp., by testing the capability to solubilize Ca3(PO4)2 or fenspat in the growth medium for phosphate, potassium solubilizing microbes, and by measurement of the viscosity of Hansen medium for slime producing microorganism. All isolates were evaluated for the effectiveness on the nutrition uptake and growth of peanut by carrying out at the greenhouse and field experiments. To evaluate the adaptation of selected isolates to the sandy soil condition, the experiments were carried out in the laboratory to determine the microbial density in suitable medium, containing different NaCI concentrations or with different pH or at different temperatures. The results showed that rhizobial strain RA18 had an N-fixing activity value of 3,458 + 10.95 nmol C2H2/plant and can supply 30% of N required for peanut. The bacterial strain P 1107 is able to solubilize phosphate and can increase phosphorus uptake by 30% in peanut. Further, inoculation of peanut with the bacterial strain S3.1 can save 30% required mineral potassium, and the Lipomyces strain PT5.1 can produce the slime, which can provide the sandy soil to keep moisture for 15 d longer than the control without the inoculation. All selected isolates are able to grow at temperatures from 20 ℃ to 35 ℃, pH from 4.5 to 6.0 and the salinity of 0.2%o-0.6%o NaCI, and can well adapt to the sandy soil conditions.展开更多
Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are appli...Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are applied but these have many side effects.Instead of these,scientists have discovered beneficial rhizobacteria,which are environmentally friendly and may increase crop yield and plant growth.The microbial population of the rhizosphere shows a pivotal role in plant development by inducing its physiology.Plant depends upon the valuable interactions among the roots and microbes for the growth,nutrients availability,growth promotion,disease suppression and other important roles for plants.Recently numerous secrets of microbes in the rhizosphere have been revealed due to huge development in molecular and microscopic technologies.This review illustrated and discussed the current knowledge on the development,maintenance,interactions of rhizobacterial populations and various proposed mechanisms normally used by PGPR in the rhizosphere that encouraging the plant growth and alleviating the stress conditions.In addition,this research reviewed the role of single and combination of PGPR,mycorrhizal fungi in plant development and modulation of the stress as well as factors affecting the microbiome in the rhizosphere.展开更多
文摘Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas.
基金Supported by Key Technologies R&D Program of Shanghai Municipal Agricultural Commission(X9810)~~
文摘A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.
文摘In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.
基金Supported by Guizhou Program for Agricultural Development([2009]3067)Guizhou Science and Technology Foundation([2012]2199)~~
文摘[Objective] The aim was to select and identify inorganic phosphorus-dissolving bacteria in rhizosphere of Trifolium repens,and to research related effects of growth promotion.[Method] Phosphate solubilizing bacteria in rhizosphere of Trifolium repens in Guizhou Province were separated and selected to determine its ability of phosphate solubilizing and IAA secretion,and growth promotion effect.[Result] Phosphate solubilizing bacteria were multiple and varied in rhizosphere of Trifolium repens;solubilizing quantities of phosphorus from calcium phosphate by RW2,RW6 and RW18 were 337.39,447.45 and 462.03 μg/ml;solubilizing quantity was none of linear relation with organic acid;RW2 proved the one secreted most IAA at 12.69 μg/ml,followed by RW18 at 12.34 μg/ml;the three strains were all of Leclercia sp.,but were of none pathogenicity for seedlings of Trifolium repens,instead,a kind of growth promotion was found.Detailedly,RW18 was most effective in growth promotion for Trifolium repens and plant height,root length and weight,and aboveground biomass increased by 110.98%,9.17%,46.17% and 2% respectively.Hence,RW18 is of great potential.[Conclusion] The research provides scientific references for developing phosphate solubilizing bacteria and compound inoculation and develops a novel way to relieve barren soils,save phosphorus resource,reduce environment pollution,and guarantee sustainable development of agriculture and animal husbandry.
基金the National Key Sciences and Technology Program for Water Solutions, China (Nos.2009ZX07102-004 and2012ZX07102-003)the National Natural Science Foundation of China (Nos.30970100 and 31160376)+1 种基金the Zhengzhou Tobacco Research Institute of China (No.122009CZ0420)the Department of Science and Technology of Yunnan Province, China (Nos.2011FA002and 11N010905)
文摘The phylogenetic diversity of phosphate solubilizing bacteria (PSB) distributed in P-rich soils in the Dianchi Lake drainage area of China was characterized, and the tricalcium phosphate (TCP) solubilizing activities of isolated PSB were determined. Among 1 328 bacteria isolated from 100 P-rich soil samples, 377 isolates (28.39% of the total) that exhibited TCP solubilization activity were taken as PSB. These PSB showed different abilities to solubilize TCP, with the concentrations of solubilized P in bacterial cultures varying from 33.48 to 69.63 mg L^(-1). A total of 123 PSB isolates, with relatively high TCP solubilization activity (〉 54.00 mg L^(-1)), were submitted for restriction fragment length polymorphism (RFLP) analysis, which revealed 32 unique RFLP patterns. Based on these patterns, 62 representative isolates, one to three from each RFLP pattern, were selected for 16S rRNA sequencing. Phylogenetic analysis placed the 123 PSB into three bacterial phyla, namely Proteobacteria, Aetinobacteria and Firmicutes. Members of Proteobacteria were the dominant PSB, where 107 isolates represented by 26 RFLP patterns were associated with the genera of Burkholderia, Pseudomonas, Acinetobacter, Enterobacter, Pantoea, Serratia, Klebsiella, Leclercia, Raoultella and Cedeeea. Firmicutes were the subdominant group, in which 13 isolates were affiliated with the genera of Bacillus and Brevibacterium. The remaining 3 isolates were identified as three species of the genus Arthrobacter. This research extends the knowledge on PSB in P-rich soils and broadens the spectrum of PSB for the development of environmentally friendly biophosphate fertilizers.
文摘This study investigates the nitrogen (N), phosphorous (P), and potassium (K) contents in raw biomasses of Camellia sinensis, Gliricidia sepium, and Musa acuminata. Therein, the highest N and P content was seen in Camellia sinensis 116.80 ± 0.08 mg and 66.00 ± 0.14 mg respectively. The highest K content (106.80 ± 0.04 mg) was observed in Musa acuminata. Next, all three types of plant materials were allowed to decompose in water for 3 weeks, and a sample from each was analyzed for NPK after the 1st, 2nd, and 3rd week during decomposition. A significant increase in the release of N, P, and K by the Camellia sinensis to water (P Musa acuminate were not significantly changed (P > 0.05) over time. The ratio for N:P:K was calculated for raw biomass samples and decomposed samples to find the best fitting N:P:K ratio to apply to young tea plants as organic fertilizers. In addition to that, the microbial insight of these organic compounds was analyzed by observing how microbial population increased with decomposition by the enumeration of the total microbial count. A considerable increment in total microbial count was observed up to 3.28 × 10<sup>6</sup>, 1.21 × 10<sup>10</sup>, 2.18 × 10<sup>8</sup>, and 6.49 × 10<sup>7</sup> CFU/ml for Camellia sinensis, Gliricidia sepium, Musa accuminata (leaves), and Musa accuminata (trunk) respectively. The presence of phosphate solubilizing bacteria (PSB) and nitrogen solubilizing bacteria (NSB) throughout the decomposition period was confirmed by their growth on NBRIP and a modified nutrient medium that was specifically designed for the identification of ammonifiers respectively. Prepared fertilizer samples were applied to young tea plants that were grown in the Mawanella area in Sri Lanka (7°15'12.42"N 80°26'47.62"E) and according to the results, it is clear that fertilizer mixture 1 (N:P:K, 10:5:10, tea dust + Gliricidia + banana trunk) and fertilizer mixture 2 (N:P:K, 10:5:10, tea dust + Gliricidia + banana leaves) has the potential to increase the growth of young tea plants.
基金This research was jointly supported by the National Basic Research Programs of China (No. 2011CB808800), the National Natural Science Foundation of China (Grant Nos. 41072253 and 41130207), and the Special Funds for Basic Scientific Research of Central Colleges,China University of Geosciences, Wuhan (CUG 120103,CUGL 100502). We also thank for the two anonymous reviewers for their comments to improve the manuscript.
文摘Biogeochemical processes are fundamental to sustain the ecosystem in subsurface caves, but to date they are still far from well understood. To investigate micro-bially mediated phosphorus and zinc cycles, we isolated three bacterial strains from the dripping water in Heshang cave, central China, identified as Exiguobacterium aurantiacum E11, Pseudomonas fluorescens P35, and Pseu- domonas poae P41, respectively. Microbial capabilities in the dissolution of phosphorus-containing minerals were tested with zinc phosphate (Zn3(PO4)2) in batch culture at 30~C. A spectrophotometer, atomic absorption spectrum, and scanning electronic microscopy were used to measure the microbial growth, soluble Zn(II) concentration, and to observe the morphology of Zn3(PO4)2 before and after microbial dissolution. P. fluorescens and P. poae, the well- known phosphorus solubilizing bacteria (PSB), are observed to solubilize Zn3(PO4)2 with an efficiency of 16.7% and 17.6%, respectively. To our knowledge, E. aurantiacum is firstly reported in this study to dissolve phosphorous-containing minerals with a higher efficiency of 39.7%, expanding our understanding about the ubiquitous occurrence of PSB in natural environments. Aqueous Zn(II) concentration positively correlates with H+ activity, confirming the presence of acidification mechanisms widely exploited by PSB. Few itching pits were observed on the surface of Zn3(PO4)2 after microbial dissolution, inferring that microbial dissolution is not always associated with the direct contact with minerals. Even though the soluble Zn(II) concentration reached up to 370 mg/L in the system inoculated with E. aurantiacum Ell, inhibition of microbial growth was not detected by spectrophotometer. Our laboratory data revealed the importance of microbially-mediated P and Zn cycles in the subsurface ecosystem.
文摘With the aim to apply the beneficial microorganisms to peanut (groundnut (Arachis hypogaea)) growing in sandy soil of Binhdinh province in Vietnam, the paper was conducted to study the isolation, selection of N-fixing, phosphate, potassium solubilizing and slime producing microorganism from sandy soil and peanut root samples, and evaluate the capability of selected isolates to adapt to the sandy soil condition. The isolation and selection of beneficial microbes were based on the biological activity of isolates, which was determined by acetylene reduction assay and nodulation on the peanut for Rhizobium spp., by testing the capability to solubilize Ca3(PO4)2 or fenspat in the growth medium for phosphate, potassium solubilizing microbes, and by measurement of the viscosity of Hansen medium for slime producing microorganism. All isolates were evaluated for the effectiveness on the nutrition uptake and growth of peanut by carrying out at the greenhouse and field experiments. To evaluate the adaptation of selected isolates to the sandy soil condition, the experiments were carried out in the laboratory to determine the microbial density in suitable medium, containing different NaCI concentrations or with different pH or at different temperatures. The results showed that rhizobial strain RA18 had an N-fixing activity value of 3,458 + 10.95 nmol C2H2/plant and can supply 30% of N required for peanut. The bacterial strain P 1107 is able to solubilize phosphate and can increase phosphorus uptake by 30% in peanut. Further, inoculation of peanut with the bacterial strain S3.1 can save 30% required mineral potassium, and the Lipomyces strain PT5.1 can produce the slime, which can provide the sandy soil to keep moisture for 15 d longer than the control without the inoculation. All selected isolates are able to grow at temperatures from 20 ℃ to 35 ℃, pH from 4.5 to 6.0 and the salinity of 0.2%o-0.6%o NaCI, and can well adapt to the sandy soil conditions.
基金The authors acknowledge that this work was financially supported by the Fundamental Research Fund for the Central Universities of China(Project No.lzujbky-2017-k15).
文摘Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are applied but these have many side effects.Instead of these,scientists have discovered beneficial rhizobacteria,which are environmentally friendly and may increase crop yield and plant growth.The microbial population of the rhizosphere shows a pivotal role in plant development by inducing its physiology.Plant depends upon the valuable interactions among the roots and microbes for the growth,nutrients availability,growth promotion,disease suppression and other important roles for plants.Recently numerous secrets of microbes in the rhizosphere have been revealed due to huge development in molecular and microscopic technologies.This review illustrated and discussed the current knowledge on the development,maintenance,interactions of rhizobacterial populations and various proposed mechanisms normally used by PGPR in the rhizosphere that encouraging the plant growth and alleviating the stress conditions.In addition,this research reviewed the role of single and combination of PGPR,mycorrhizal fungi in plant development and modulation of the stress as well as factors affecting the microbiome in the rhizosphere.