Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generall...Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generally, the rhizosphere soil contained around 5 to 100 times more of these bacteria and fungi than the non-rhizosphere soil. However, the actinomycetes in the rhizosphere soil were significantly lower than those in the non-rhizosphere soil. The numbers of these microorganisms didn't significantly change during corn growth in the soils. However, the proportion of the phosphate-dissolving microorganisms in the total changed markedly during corn growth. Generally there were much higher percentages of phosphate-dissolving bacteria and phosphate-dissolving fungi in the rhizosphere soil than the nonrhizosphere soil. More than 90% of the fungi in rhizosphere dissolved inorganic phosphate at the seedling period, but this proportion declined to 20% at the harvesting time. The community of phosphate-dissolving microorganisms also changed during corn growth. Bacillus was dominant in the nonrhizosphere soil. However, in the rhizosphere, Pseudomonas and Enterobacter became predominant. Penicillium and Streptomyces were the main fungi and actinomycetes capable of dissolving phosphate.展开更多
Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubiliza-tion by an Aspe...Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubiliza-tion by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.展开更多
文摘Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generally, the rhizosphere soil contained around 5 to 100 times more of these bacteria and fungi than the non-rhizosphere soil. However, the actinomycetes in the rhizosphere soil were significantly lower than those in the non-rhizosphere soil. The numbers of these microorganisms didn't significantly change during corn growth in the soils. However, the proportion of the phosphate-dissolving microorganisms in the total changed markedly during corn growth. Generally there were much higher percentages of phosphate-dissolving bacteria and phosphate-dissolving fungi in the rhizosphere soil than the nonrhizosphere soil. More than 90% of the fungi in rhizosphere dissolved inorganic phosphate at the seedling period, but this proportion declined to 20% at the harvesting time. The community of phosphate-dissolving microorganisms also changed during corn growth. Bacillus was dominant in the nonrhizosphere soil. However, in the rhizosphere, Pseudomonas and Enterobacter became predominant. Penicillium and Streptomyces were the main fungi and actinomycetes capable of dissolving phosphate.
基金supported by the National Key Project for Basic Research and Development(G1999011803).
文摘Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubiliza-tion by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.