BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many c...BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture...BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.展开更多
A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical sev...A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.展开更多
AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class?I?phosphoinositide 3-kinase (Class?I?PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric ca...AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class?I?phosphoinositide 3-kinase (Class?I?PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric cancer SGC7901 and MGC803 cells.METHODS: We constructed the recombinant replication adenovirus PI3K(I)-RNA interference (RNAi)-green fluorescent protein (GFP) and control adenovirus NC-RNAi-GFP, and infected it into human gastric cancer cells. MTT assay was used to determine the growth rate of the gastric cancer cells. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment. Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. The expression of autophagy was monitored with MDC, LC3 staining, and transmission electron microscopy. Western blotting was used to detect p53, Beclin-1, Bcl-2, and LC3 protein expression in the culture supernatant.RESULTS: The viability of gastric cancer cells was inhibited after siRNA targeting to the Class?I?PI3K blocked Class?I?PI3K signal pathway. MTT assays revealed that, after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 27.48% ± 2.71% at 24 h, 41.92% ± 2.02% at 48 h, and 50.85% ± 0.91% at 72 h. After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 24.39% ± 0.93% at 24 h, 47.00% ± 0.87% at 48 h, and 70.30% ± 0.86% at 72 h (P < 0.05 compared to control group). It was determined that when 50 MOI, the transfection efficiency was 95% ± 2.4%. Adenovirus PI3K(I)-RNAi-GFP (50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells, and the results described here prove that RNAi of Class?I?PI3K induced apoptosis in SGC7901 cells. The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity, indicating increased formation of autophagosomes. The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low. After incubating with adenovirus PI3K(I)-RNAi-GFP (50 MOI), Beclin-1, LC3, and p53 protein expression was significantly increased from 24 to 72 h. We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP (50 MOI). A number of isolated membranes, possibly derived from ribosome-free endoplasmic reticulum, were seen. These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles. We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)-RNAi-GFP (50 MOI) treatment. Control cells showed a round shape and contained normal-looking organelles, nucleus, and chromatin, while adenovirus PI3K(I)-RNAi-GFP (50 MOI)-treated cells exhibited the typical signs of autophagy.CONCLUSION: After the Class?I?PI3K signaling pathway has been blocked by siRNA, the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced.展开更多
Objective To explore the mechanisms involved in Staphylococcus aureus (S. aureus) invading human monocytic U937 cells. Methods S. aureus were added to U937 cells at multiplicity of infections (MOI) of 20:1 for 0...Objective To explore the mechanisms involved in Staphylococcus aureus (S. aureus) invading human monocytic U937 cells. Methods S. aureus were added to U937 cells at multiplicity of infections (MOI) of 20:1 for 0, 15, 30, 60, and 90 minutes, respectively. Cell apoptosis was analyzed with Hoechst 33258 staining and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry analysis. Akt and nuclear factor-κB (NF-κB) activities were detected by Western blotting. Results Infection of U937 cells with S. aureus induced rapid cell death in a time-dependent manner, and the cells displayed characteristic features of apoptosis. S. aureus-induced apoptosis was associated with a prominent downregulation of activated (phosphorylated) Akt and NF-κB. The inhibition of phosphorylated Akt by LY294002 led to the inhibition of NF-κB in a dose-dependent manner. Inhibition of Akt with LY294002 caused further increase in apoptosis of U937 cells. Conclusions S. aureus can stimulate the apoptosis of U937 ceils. S. aureus induces apoptosis of U937 cells by inhibiting Akt-regulated NF-κB.展开更多
BACKGROUND Autophagy is an evolutionarily conserved biological process in eukaryotic cells that involves lysosomal-mediated degradation and recycling of related cellular components.Recent studies have shown that autop...BACKGROUND Autophagy is an evolutionarily conserved biological process in eukaryotic cells that involves lysosomal-mediated degradation and recycling of related cellular components.Recent studies have shown that autophagy plays an important role in the pathogenesis of Crohn’s disease(CD).Herbal cake-partitioned moxibustion(HM)has been historically practiced to treat CD.However,the mechanism by which HM regulates colonic autophagy in CD remains unclear.AIM To observe whether HM can alleviate CD by regulating colonic autophagy and to elucidate the underlying mechanism.METHODS Rats were randomly divided into a normal control(NC)group,a CD group,an HM group,an insulin+CD(I+CD)group,an insulin+HM(I+HM)group,a rapamycin+CD(RA+CD)group,and a rapamycin+HM(RA+HM)group.2,4,6-trinitrobenzenesulfonic acid was administered to establish a CD model.The morphology of the colonic mucosa was observed by hematoxylin-eosin staining,and the formation of autophagosomes was observed by electron microscopy.The expression of autophagy marker microtubule-associated protein 1 light chain 3 beta(LC3B)was observed by immunofluorescence staining.Insulin and rapamycin were used to inhibit and activate colonic autophagy,respectively.The mRNA expression levels of phosphatidylinositol 3-kinase class I(PI3KC1),Akt1,LC3B,sequestosome 1(p62),and mammalian target of rapamycin(mTOR)were evaluated by RT-qPCR.The protein expression levels of interleukin 18(IL-18),tumor necrosis factor-α(TNF-α),nuclear factorκB/p65(NF-κB p65),LC3B,p62,coiled-coil myosin-like BCL2-interacting protein(Beclin-1),p-mTOR,PI3KC1,class III phosphatidylinositol 3-kinase(PI3KC3/Vps34),and p-Akt were evaluated by Western blot analysis.RESULTS Compared with the NC group,the CD group showed severe damage to colon tissues and higher expression levels of IL-18 and NF-κB p65 in colon tissues(P<0.01 for both).Compared with the CD group,the HM group showed significantly lower levels of these proteins(PIL-18<0.01 and Pp65<0.05).There were no significant differences in the expression of TNF-αprotein in colon tissue among the rat groups.Typical autophagic vesicles were found in both the CD and HM groups.The expression of the autophagy proteins LC3B and Beclin-1 was upregulated(P<0.01 for both)in the colon tissues of rats in the CD group compared with the NC group,while the protein expression of p62 and p-mTOR was downregulated(P<0.01 for both).However,these expression trends were significantly reversed in the HM group compared with the CD group(PLC3B<0.01,PBeclin-1<0.05,Pp62<0.05,and Pm-TOR<0.05).Compared with those in the RA+CD group,the mRNA expression levels of PI3KC1,Akt1,mTOR,and p62 in the RA+HM group were significantly higher(PPI3KC1<0.01 and PAkt1,mTOR,and p62<0.05),while those of LC3B were significantly lower(P<0.05).Compared with the RA+CD group,the RA+HM group exhibited significantly higher PI3KC1,p-Akt1,and pmTOR protein levels(PPI3KC1<0.01,Pp-Akt1<0.05,and Pp-mTOR<0.01),a higher p62 protein level(P=0.057),and significantly lower LC3B and Vps34 protein levels(P<0.01 for both)in colon tissue.CONCLUSION HM can activate PI3KC1/Akt1/mTOR signaling while inhibiting the PI3KC3(Vps34)-Beclin-1 protein complex in the colon tissues of CD rats,thereby inhibiting overactivated autophagy and thus exerting a therapeutic effect.展开更多
BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) a...BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma(HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHPassociated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS). Cellbased experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP(0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay.Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction(RT-qPCR), respectively.Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway.Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry:Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose-and timedependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract(0.625mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins(e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3.Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC.展开更多
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injurie...Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.展开更多
Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoin...Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoinositide 3-kinase (PI3K)/Akt and high mobility group box 1 (HMGBxl) signaling plays an important role in LPS-induced cardioprotection. Methods: In in vivo experiments, age- and weight- matched male C57BL/10Sc wild type mice were pretreated with LPS before ligation of the left anterior descending coronary followed by reperfusion. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. Akt, phospho-Akt, and HMGBxl were assessed by immunoblotting with appropriate primary antibodies. In situ cardiac myocyte apop- tosis was examined by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. In an in vitro study, rat cardiac myoblasts (H9c2) were subdivided into two groups, and only one was pretreated with LPS. After pretreatment, the cells were transferred into a hypoxic chamber under 0.5% 02. Levels of HMGBxl were assessed by immunoblot. Results: In the in vivo experiment, pretreatment with LPS reduced the at risk infarct size by 70.6% and the left ventricle infarct size by 64.93% respectively. Pretreatment with LPS also reduced cardiac myocytes apoptosis by 39.1% after ischemia and reperfusion. The mechanisms of LPS induced cardioprotection involved increasing PI3K/Akt activity and decreasing expression of HMGBxl. In the in vitro study, pretreatment with LPS reduced the level of HMGBxl in H9c2 cell cytoplasm following hypoxia. Conclusion: The results suggest that the cardioprotection following I/R induced by LPS pretreatment involves PI3K/Akt and HMGBxl pathways.展开更多
To investigate the molecular mechanism of leptin regulating insulin secretion through determining the regulation of insulin secretion and the insulin receptor substrate (IRS)-2-associated phosphoinositide 3-kinase (PI...To investigate the molecular mechanism of leptin regulating insulin secretion through determining the regulation of insulin secretion and the insulin receptor substrate (IRS)-2-associated phosphoinositide 3-kinase (PI3K) activity by leptin in the isolated rat pancreatic islets, pancreatic islets were isolated from male SD rats by the collagenase method. The purified islets were incubated with leptin 2 nmol/L for 1 h in the presence of 5.6 mmol/L or 11.1 mmol/L glucose. Insulin release was measured using radioimmunoassay. IRS-2-associated activity of PI3K was determined by immunoprecipitate assay and Western blot. The results showed that in the presence of 5.6 mmol/L glucose, leptin had no significant effect on both insulin secretion and IRS-2-associated PI3K activity, but in the presence of 11.1 mmol/L glucose, insulin release was significantly inhibited after the islets were exposed to leptin for 1 h (P<0.01). PI3K inhibitor wortmannin blocked the inhibitory regulation of leptin on insulin release (P<0.05). Western Blot assay revealed that 2 nmol/L leptin could significantly increase the IRS-2-associated activity of PI3K by 51.5 % (P<0.05) in the presence of 11.1 mmol/L glucose. It was concluded that Leptin could significantly inhibit insulin secretion in the presence of 11.1 mmol/L glucose by stimulating IRS-2-associated activity of PI3K, which might be the molecular mechanism of leptin regulating insulin secretion.展开更多
OBJECTIVE Phosphoinositide 3-kinase(PI3K) activation was reported to participate in the development of effect of some drugs,such as morphine and cocaine dependence.We previous found nischarin is associated with the ac...OBJECTIVE Phosphoinositide 3-kinase(PI3K) activation was reported to participate in the development of effect of some drugs,such as morphine and cocaine dependence.We previous found nischarin is associated with the activation of PI3K.It is our great interest to investigate the involvement of nischarin in PI3K dependent modulation of morphine versus cocaine dependence.METHODS In order to study the role of nischarin in drug dependence and tolerance,nischarin knockout mice were used for our research.Effect of psychological dependence was studied by conditioned place preference(CPP),and the effect of physical dependence was tested by naloxone-precipitated withdrawal signs.Some brain tissues were harvested 24 h after the behavioral experiment for the further measurement.RESULTS PI3K specific inhibitor LY294002 significantly blocked the acquisition of morphine-induced CPP in wild-type mice,but had no effect on its expression.In comparison,LY294002 failed to block the acquisition of cocaine-induced CPP but inhibited the expression.Furthermore,we found naloxoneprecipitated withdrawal signs in the morphine dependent mice was inhibited by LY294002.Nischarin knockout in mice could abolish the effect of LY294002 on blocking the effects of morphine,but had no effect on cocaine.CONCLUSION PI3K activation is involved in the different phases of morphine and cocaine dependence,and nischarin plays an important role in the process.展开更多
AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylth...AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry,DAPI staining assay and caspase-3 activity assay.Quantitative reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the expression of microRNA-124(miR-124) in response to paeoniflorin.The expression of phosphatidylinositol 3-kinase(PI3K),protein kinase B(Akt), phospho-Akt(p-Akt) and phospho-signal transducer and activator of transcription3(p-STAT3) were also measured by quantitative RTPCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3 K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3 K agonist(IGF-1, 1μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.展开更多
Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4)...Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.展开更多
3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribos...3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.展开更多
Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ...Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.展开更多
基金National Natural Science Foundation of China,No.81704059Scientific Research Project of Hebei Province Traditional Chinese Medicine Administration,No.2017130。
文摘BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金supported by a grant from National Natural Science Foundation of China (82272196)。
文摘BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.
基金Supported by Ministero dell’Universitàe della Ricerca Scientifica e Tecnologica(MURST,ex-60%to GM and EL)
文摘A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.
基金Supported by The Natural Science Foundation of China,No. 81172348Suzhou High-Level Talents Project,2008-11+1 种基金Suzhou Science and Technology Development Foundation,2010SYS201031the Science,Education,and Health Foundation of Suzhou City,SWKQ0914 and SWKQ0916
文摘AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class?I?phosphoinositide 3-kinase (Class?I?PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric cancer SGC7901 and MGC803 cells.METHODS: We constructed the recombinant replication adenovirus PI3K(I)-RNA interference (RNAi)-green fluorescent protein (GFP) and control adenovirus NC-RNAi-GFP, and infected it into human gastric cancer cells. MTT assay was used to determine the growth rate of the gastric cancer cells. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment. Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. The expression of autophagy was monitored with MDC, LC3 staining, and transmission electron microscopy. Western blotting was used to detect p53, Beclin-1, Bcl-2, and LC3 protein expression in the culture supernatant.RESULTS: The viability of gastric cancer cells was inhibited after siRNA targeting to the Class?I?PI3K blocked Class?I?PI3K signal pathway. MTT assays revealed that, after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 27.48% ± 2.71% at 24 h, 41.92% ± 2.02% at 48 h, and 50.85% ± 0.91% at 72 h. After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 24.39% ± 0.93% at 24 h, 47.00% ± 0.87% at 48 h, and 70.30% ± 0.86% at 72 h (P < 0.05 compared to control group). It was determined that when 50 MOI, the transfection efficiency was 95% ± 2.4%. Adenovirus PI3K(I)-RNAi-GFP (50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells, and the results described here prove that RNAi of Class?I?PI3K induced apoptosis in SGC7901 cells. The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity, indicating increased formation of autophagosomes. The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low. After incubating with adenovirus PI3K(I)-RNAi-GFP (50 MOI), Beclin-1, LC3, and p53 protein expression was significantly increased from 24 to 72 h. We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP (50 MOI). A number of isolated membranes, possibly derived from ribosome-free endoplasmic reticulum, were seen. These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles. We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)-RNAi-GFP (50 MOI) treatment. Control cells showed a round shape and contained normal-looking organelles, nucleus, and chromatin, while adenovirus PI3K(I)-RNAi-GFP (50 MOI)-treated cells exhibited the typical signs of autophagy.CONCLUSION: After the Class?I?PI3K signaling pathway has been blocked by siRNA, the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced.
基金Supported by the Doctor Research Start-up Fund of Liaoning province (20081055)a grant from the Education Department of Liaoning province (2009A737)
文摘Objective To explore the mechanisms involved in Staphylococcus aureus (S. aureus) invading human monocytic U937 cells. Methods S. aureus were added to U937 cells at multiplicity of infections (MOI) of 20:1 for 0, 15, 30, 60, and 90 minutes, respectively. Cell apoptosis was analyzed with Hoechst 33258 staining and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry analysis. Akt and nuclear factor-κB (NF-κB) activities were detected by Western blotting. Results Infection of U937 cells with S. aureus induced rapid cell death in a time-dependent manner, and the cells displayed characteristic features of apoptosis. S. aureus-induced apoptosis was associated with a prominent downregulation of activated (phosphorylated) Akt and NF-κB. The inhibition of phosphorylated Akt by LY294002 led to the inhibition of NF-κB in a dose-dependent manner. Inhibition of Akt with LY294002 caused further increase in apoptosis of U937 cells. Conclusions S. aureus can stimulate the apoptosis of U937 ceils. S. aureus induces apoptosis of U937 cells by inhibiting Akt-regulated NF-κB.
基金the Program of Shanghai Academic Research Leader,No.17XD1403400National Natural Sciences Foundation of China,No.81574079 and No.81873374+2 种基金Three-year Action Plan Project of Shanghai Traditional Chinese Medicine Development,No.ZY(2018-2020)-CCCX-2004-01Chinese Medicine Inheritance and Innovation"100 Million"Talent Project,Qi Huang ScholarShanghai Rising-Star Program,No.16QA1403400.
文摘BACKGROUND Autophagy is an evolutionarily conserved biological process in eukaryotic cells that involves lysosomal-mediated degradation and recycling of related cellular components.Recent studies have shown that autophagy plays an important role in the pathogenesis of Crohn’s disease(CD).Herbal cake-partitioned moxibustion(HM)has been historically practiced to treat CD.However,the mechanism by which HM regulates colonic autophagy in CD remains unclear.AIM To observe whether HM can alleviate CD by regulating colonic autophagy and to elucidate the underlying mechanism.METHODS Rats were randomly divided into a normal control(NC)group,a CD group,an HM group,an insulin+CD(I+CD)group,an insulin+HM(I+HM)group,a rapamycin+CD(RA+CD)group,and a rapamycin+HM(RA+HM)group.2,4,6-trinitrobenzenesulfonic acid was administered to establish a CD model.The morphology of the colonic mucosa was observed by hematoxylin-eosin staining,and the formation of autophagosomes was observed by electron microscopy.The expression of autophagy marker microtubule-associated protein 1 light chain 3 beta(LC3B)was observed by immunofluorescence staining.Insulin and rapamycin were used to inhibit and activate colonic autophagy,respectively.The mRNA expression levels of phosphatidylinositol 3-kinase class I(PI3KC1),Akt1,LC3B,sequestosome 1(p62),and mammalian target of rapamycin(mTOR)were evaluated by RT-qPCR.The protein expression levels of interleukin 18(IL-18),tumor necrosis factor-α(TNF-α),nuclear factorκB/p65(NF-κB p65),LC3B,p62,coiled-coil myosin-like BCL2-interacting protein(Beclin-1),p-mTOR,PI3KC1,class III phosphatidylinositol 3-kinase(PI3KC3/Vps34),and p-Akt were evaluated by Western blot analysis.RESULTS Compared with the NC group,the CD group showed severe damage to colon tissues and higher expression levels of IL-18 and NF-κB p65 in colon tissues(P<0.01 for both).Compared with the CD group,the HM group showed significantly lower levels of these proteins(PIL-18<0.01 and Pp65<0.05).There were no significant differences in the expression of TNF-αprotein in colon tissue among the rat groups.Typical autophagic vesicles were found in both the CD and HM groups.The expression of the autophagy proteins LC3B and Beclin-1 was upregulated(P<0.01 for both)in the colon tissues of rats in the CD group compared with the NC group,while the protein expression of p62 and p-mTOR was downregulated(P<0.01 for both).However,these expression trends were significantly reversed in the HM group compared with the CD group(PLC3B<0.01,PBeclin-1<0.05,Pp62<0.05,and Pm-TOR<0.05).Compared with those in the RA+CD group,the mRNA expression levels of PI3KC1,Akt1,mTOR,and p62 in the RA+HM group were significantly higher(PPI3KC1<0.01 and PAkt1,mTOR,and p62<0.05),while those of LC3B were significantly lower(P<0.05).Compared with the RA+CD group,the RA+HM group exhibited significantly higher PI3KC1,p-Akt1,and pmTOR protein levels(PPI3KC1<0.01,Pp-Akt1<0.05,and Pp-mTOR<0.01),a higher p62 protein level(P=0.057),and significantly lower LC3B and Vps34 protein levels(P<0.01 for both)in colon tissue.CONCLUSION HM can activate PI3KC1/Akt1/mTOR signaling while inhibiting the PI3KC3(Vps34)-Beclin-1 protein complex in the colon tissues of CD rats,thereby inhibiting overactivated autophagy and thus exerting a therapeutic effect.
基金Supported by National Natural Science Foundation of China, No. U20A20408 and No. 82074450Natural Science Foundation of Hunan Province, No. 2020JJ4066+4 种基金Hunan Province"Domestic First-class Cultivation Discipline"Integrated Traditional Chinese and Western Medicine Open Fund Project, No. 2020ZXYJH34 and No. 2020ZXYJH35Hunan Graduate Scientific Research Innovation Project, No. QL20210173 and No. CX20210730Hunan Province Science and Technology Innovation Talents Plan College Students Science and Technology Innovation and Entrepreneurship Project, No. 2020RC1004Guangzhou Health Science and Technology Project, No. 20221A011102Hunan Traditional Chinese Medicine Scientific Research Project, No. 202101
文摘BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma(HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHPassociated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS). Cellbased experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP(0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay.Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction(RT-qPCR), respectively.Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway.Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry:Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose-and timedependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract(0.625mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins(e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3.Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC.
基金the Medical Research Council(MR/R004544/1,MR/R004463/1,to RE)EU ERA-NET NEURON(AxonRepair grant,to BN)+1 种基金Fight for Sight(5119/5120,and 5065-5066,to RE)National Eye Research Centre(to RE).
文摘Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
文摘Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoinositide 3-kinase (PI3K)/Akt and high mobility group box 1 (HMGBxl) signaling plays an important role in LPS-induced cardioprotection. Methods: In in vivo experiments, age- and weight- matched male C57BL/10Sc wild type mice were pretreated with LPS before ligation of the left anterior descending coronary followed by reperfusion. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. Akt, phospho-Akt, and HMGBxl were assessed by immunoblotting with appropriate primary antibodies. In situ cardiac myocyte apop- tosis was examined by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. In an in vitro study, rat cardiac myoblasts (H9c2) were subdivided into two groups, and only one was pretreated with LPS. After pretreatment, the cells were transferred into a hypoxic chamber under 0.5% 02. Levels of HMGBxl were assessed by immunoblot. Results: In the in vivo experiment, pretreatment with LPS reduced the at risk infarct size by 70.6% and the left ventricle infarct size by 64.93% respectively. Pretreatment with LPS also reduced cardiac myocytes apoptosis by 39.1% after ischemia and reperfusion. The mechanisms of LPS induced cardioprotection involved increasing PI3K/Akt activity and decreasing expression of HMGBxl. In the in vitro study, pretreatment with LPS reduced the level of HMGBxl in H9c2 cell cytoplasm following hypoxia. Conclusion: The results suggest that the cardioprotection following I/R induced by LPS pretreatment involves PI3K/Akt and HMGBxl pathways.
基金This project was supported by Ministry of Education Re-turning Overseas Scholar science study Foundation( 2 0 0 2 2 47) ,province Hubei Natural Sciences Foundation( 2 0 0 2 AB13 6) ,Wuhan science and Technology ChenguangPlan Foundation( 9910 0 2 0 9)
文摘To investigate the molecular mechanism of leptin regulating insulin secretion through determining the regulation of insulin secretion and the insulin receptor substrate (IRS)-2-associated phosphoinositide 3-kinase (PI3K) activity by leptin in the isolated rat pancreatic islets, pancreatic islets were isolated from male SD rats by the collagenase method. The purified islets were incubated with leptin 2 nmol/L for 1 h in the presence of 5.6 mmol/L or 11.1 mmol/L glucose. Insulin release was measured using radioimmunoassay. IRS-2-associated activity of PI3K was determined by immunoprecipitate assay and Western blot. The results showed that in the presence of 5.6 mmol/L glucose, leptin had no significant effect on both insulin secretion and IRS-2-associated PI3K activity, but in the presence of 11.1 mmol/L glucose, insulin release was significantly inhibited after the islets were exposed to leptin for 1 h (P<0.01). PI3K inhibitor wortmannin blocked the inhibitory regulation of leptin on insulin release (P<0.05). Western Blot assay revealed that 2 nmol/L leptin could significantly increase the IRS-2-associated activity of PI3K by 51.5 % (P<0.05) in the presence of 11.1 mmol/L glucose. It was concluded that Leptin could significantly inhibit insulin secretion in the presence of 11.1 mmol/L glucose by stimulating IRS-2-associated activity of PI3K, which might be the molecular mechanism of leptin regulating insulin secretion.
基金National Natural Science Foundation of China (81673409).
文摘OBJECTIVE Phosphoinositide 3-kinase(PI3K) activation was reported to participate in the development of effect of some drugs,such as morphine and cocaine dependence.We previous found nischarin is associated with the activation of PI3K.It is our great interest to investigate the involvement of nischarin in PI3K dependent modulation of morphine versus cocaine dependence.METHODS In order to study the role of nischarin in drug dependence and tolerance,nischarin knockout mice were used for our research.Effect of psychological dependence was studied by conditioned place preference(CPP),and the effect of physical dependence was tested by naloxone-precipitated withdrawal signs.Some brain tissues were harvested 24 h after the behavioral experiment for the further measurement.RESULTS PI3K specific inhibitor LY294002 significantly blocked the acquisition of morphine-induced CPP in wild-type mice,but had no effect on its expression.In comparison,LY294002 failed to block the acquisition of cocaine-induced CPP but inhibited the expression.Furthermore,we found naloxoneprecipitated withdrawal signs in the morphine dependent mice was inhibited by LY294002.Nischarin knockout in mice could abolish the effect of LY294002 on blocking the effects of morphine,but had no effect on cocaine.CONCLUSION PI3K activation is involved in the different phases of morphine and cocaine dependence,and nischarin plays an important role in the process.
基金Supported by National Natural Science Foundation of China,No.81372553
文摘AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry,DAPI staining assay and caspase-3 activity assay.Quantitative reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the expression of microRNA-124(miR-124) in response to paeoniflorin.The expression of phosphatidylinositol 3-kinase(PI3K),protein kinase B(Akt), phospho-Akt(p-Akt) and phospho-signal transducer and activator of transcription3(p-STAT3) were also measured by quantitative RTPCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3 K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3 K agonist(IGF-1, 1μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.
基金This work was supported by grants from the National Natural Science Foundation of China(No.30370142)the.National Special Key Project on Functional Genomics and Biochip of China(No.2002AA2Z1002)the Project sponsored by the Scientific Research Foundation for the Returned Oversea Chinese Scholars,State Education Ministry.
文摘Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.
基金Supported by National Research Foundation of Korea grant funded by the Korea Government (MEST),No.2010-0001356Supported by a grant from the National R and D Program for Cancer Control funded by Ministry of Health and Welfare,Republic of Korea,No.0720560
文摘3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.
基金supported by Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT)#1200836,#1210644,and#1240888,and Agencia Nacional de Investigación y Desarrollo(ANID)-FONDAP#15130011(to LL)FONDECYT#3230227(to MFG).
文摘Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.