The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C...The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.展开更多
A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are...A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are capable of reacting with various types of organics. Toxic organic com-pounds are converted to small molecular wight organic acids, aldehydes, and/or alcohols, while yel-low phosphonis is oxidital into phosphoric acid, which may be recovered as a valuable byproduct.This technique has ben demonstrated to be effective for destroying many types of toxic organiccompounds. including PAH, aromatic chlorides, amines, alcohols, and acids, nitro-aromatics,heterocyclic hydrocarbons, PCB, aliphatic chlorides and sulfides, dyes, and pesticides.展开更多
In order to analyze the complex chemical kinetic mechanism systematically and find out the redundant species and reactions, a numerical platform for mechanism analysis and simplification is established basing on Path ...In order to analyze the complex chemical kinetic mechanism systematically and find out the redundant species and reactions, a numerical platform for mechanism analysis and simplification is established basing on Path Flux Analysis (PFA). It is used to reduce a detailed mechanism for flame inhibited by phosphorus containing compounds, a reduced mechanism with 65 species and 335 reactions is obtained. The detailed and reduced mechanism are both used to calculate the freely-propagating premix C3H8/air flame with different dimethyl methylphosphonate doped over a wide range of equivalence ratios. The concentration distributions of free radicals and major species are compared, and the results under two different mechanisms agree well. The laminar flame speed obtained by the two mechanisms also matches well, with the maximum relative error introduces as a small value of 1.7%. On the basis of the reduced mechanism validation, the correlativity analysis is conducted between flame speed and flee radical concentrations, which can provide information for target species selection in the further mechanism reduction. By analyzing the species and reactions fluxes, the species and reaction paths which contribute the flame inhibition significantly are determined.展开更多
Using cation exchange resin(D72,Amberlyst-15) as catalyst, Mannich-type reaction of 5-amino-1,2,4-triazole 1, containing guanidine substructure, provides an efficient synthesis of a new kind of bicyclic P- and N-conta...Using cation exchange resin(D72,Amberlyst-15) as catalyst, Mannich-type reaction of 5-amino-1,2,4-triazole 1, containing guanidine substructure, provides an efficient synthesis of a new kind of bicyclic P- and N-containing compounds, 6-phospha-4,5,6-trihydroimidazolo [2,3-e] 1,2,4-triazole 4.展开更多
Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization ...Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min- eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel- opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G intraradices, G. cladoideum, G microagregatum, G caledonium and G. etunica- tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab- lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con- centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.展开更多
2-methoxy-6-oxo-1, 4, 2-diazaphosphorinane-2-oxide 8, phosphorus counterpart of 2, 6-dioxopiperazine, was synthesized as antitumor agent. The new phosphorus heterocycle compound 8 is the key intermediate in the synthe...2-methoxy-6-oxo-1, 4, 2-diazaphosphorinane-2-oxide 8, phosphorus counterpart of 2, 6-dioxopiperazine, was synthesized as antitumor agent. The new phosphorus heterocycle compound 8 is the key intermediate in the synthesis of phosphorus counterpart of bisdioxopiperazine.展开更多
Seventy organic compounds including various organophosphorus esters, amines and oxygen-based ligands were investigated as extractants. The experiment results show that amines are excellent extractants for W and Mo. Th...Seventy organic compounds including various organophosphorus esters, amines and oxygen-based ligands were investigated as extractants. The experiment results show that amines are excellent extractants for W and Mo. Their sequence of extraction ability for W is as follows: quarternary amine > tertiary amine > secondary amine > primary amine. Acidic organophosphorus extractants do not extract W, but can extract Mo with high extraction ability from the acidic solution. These extractants could provide a potential process for separating W from Mo.展开更多
Bone Mineral Content(BMC), serum cal-cium, phosphorus and AlP were measured in64 epileptic patients on long term treatmentwith one or two kinds of antiepileptic drugs(AEDs) ,and in 14 epileptic patients not tak-ing AE...Bone Mineral Content(BMC), serum cal-cium, phosphorus and AlP were measured in64 epileptic patients on long term treatmentwith one or two kinds of antiepileptic drugs(AEDs) ,and in 14 epileptic patients not tak-ing AEDs. In the epileptic patients takingAEDs, the BMC value was 0.645±0.020g/cm^2,significantly lower than 0.693±0.022g/cm^2, theBMC value of the control group (P【0.01).展开更多
An electron-addition, under single-crystal conditions, to pentavalent phosphorus compounds as Cl-P (=O, S) Y, Z with the P-Cl bond as electron-accepting group, is selected as an additional model for SN2(P) like reacti...An electron-addition, under single-crystal conditions, to pentavalent phosphorus compounds as Cl-P (=O, S) Y, Z with the P-Cl bond as electron-accepting group, is selected as an additional model for SN2(P) like reactions. It is demonstrated that the geometric information stored in the tetrahedral configuration (substrate) can be transmitted in the corresponding trigonal bipyramidal (TBP) state for nucleophilic substitution. In this article, we focus on these specific mechanistic aspects of carbon and phosphorus. We consider our study as a contribution to the significance of these (bio)chemical intermediates.展开更多
Stereodivergently constructing the designed products having adjacent multi-stereocenters via a given reaction,with excellent control of both absolute and relative configurations,presents one of the substantial hurdles...Stereodivergently constructing the designed products having adjacent multi-stereocenters via a given reaction,with excellent control of both absolute and relative configurations,presents one of the substantial hurdles in asymmetric catalysis.Herein,we report a precisely stereodivergent asymmetric protocol by synergistic combination of phosphonium-involved ion-pair catalysis and base for accessing to chiral phosphorus compounds bearing two adjacent chiral centers particularly containing an acidic protonated enantioenriched carbon atom,having broad functional group compatibility in both dynamic and thermodynamic processes under mild reaction conditions.Two keys for the success in constructing these stereoisomers with high levels of regio-,diastereo-,and enantioselectivities were contained:firstly,the precise stereo-control in providing dynamic products was enabled by bifunctional phosphonium salt catalyst with semi-enclosed cavity;secondly,the readily stereospecific transformation of adducts from dynamic to thermodynamic version was initiated by achiral base.All four stereoisomers could be readily accessed even in gram-scale in high yields with maintaining excellent stereoselectivities,illustrating the potential of this synergistic catalytic methodology in organic synthesis.Moreover,mechanistic studies including density functional theory(DFT)calculations and control experiments provide insights into the mechanism.展开更多
In normal phase condition, a series of chiral phosphorus organic compounds have been separated by high-performance liquid chromatography. In order to study the retention and chiral recognition mechanism, the method of...In normal phase condition, a series of chiral phosphorus organic compounds have been separated by high-performance liquid chromatography. In order to study the retention and chiral recognition mechanism, the method of quantitative structure-enantioselectivity retention relationships (QSERRs) has been investigated from the quantitative equations established between the chromatographic retention of enantiomers and their molecular descriptors of physicochemical properties. The results show that on the Pirkle-type chiral stationary phase (CSP) of Sumichiral OA4700, it is the parameter of LUMO that gives the most contribution to the chromatographic retention of O-ethyl O-(substituted) phenyl N-isopropyl phosphoroamidothioates resulting from the interaction of hydrogen bond and (or) π-π interaction. Meanwhile, the chiral recognition is formed from the contribution of logP and LUMO.展开更多
The zwitterionic intermediate generated from the reaction of triphenylphosphine with electron deficient acety- lenic compounds was trapped by various NH acids. The synthesis resulted in a new class of highly functiona...The zwitterionic intermediate generated from the reaction of triphenylphosphine with electron deficient acety- lenic compounds was trapped by various NH acids. The synthesis resulted in a new class of highly functionalized heterocyclic compounds. Some of the reactions produced E and Z isomers. And the stability and transformation of them were studied by dynamic 1H NMR and density functional theory (DFT) calculations.展开更多
The inadequate performance of oxygen reduction reaction(ORR)catalysts hampers the development of proton exchange membrane fuel cells(PEMFCs).Herein,we proposed an approach to tackle this problem by modulating the chem...The inadequate performance of oxygen reduction reaction(ORR)catalysts hampers the development of proton exchange membrane fuel cells(PEMFCs).Herein,we proposed an approach to tackle this problem by modulating the chemical bond type of intermetallic Pt-based catalysts,using phosphorus(P)doped L1_(0)-PtFeGa_(0.1)/C(P-L1_(0)-PtFeGa_(0.1)/C)as a proof of concept.X-ray absorption spectroscopy(XAS)demonstrated that the doped P transferred electrons to Pt,and thus,modified the electronic structure of Pt,weakening the adsorption strength with oxygen-containing species.Therefore P-L1_(0)-PtFeGa_(0.1)/C showed 13 times mass activity(MA)compared with commercial Pt/C,with a decay of only 28%after 100,000 potential cycles.When equipped in the membrane electrode assembly,the P-L1_(0)-PtFeGa_(0.1)/C catalyst also exhibited a remarkable activity(MA=0.84 A mgPt^(−1)at 0.9 V)and stability(MA retention=72%and voltage loss=9 mVat 0.8 A cm^(−2)after 30,000 cycles),making it one of the best performers among recorded Pt-based catalysts.Theoretical studies demonstrated that the doping of P optimized the adsorption energy between Pt and oxygen intermediates through sp-d orbital interactions and prevented metal dissolution by forming stronger Pt-P covalent bonds compared with Pt–Pt bonds.展开更多
Ab initio LCAO-MO-SCF calculations for several typical molecules containing phosphorus have been undertaken to study the role of phosphorus 3d orbitals in the bonding.It is emphasized that the discussion about the 3d ...Ab initio LCAO-MO-SCF calculations for several typical molecules containing phosphorus have been undertaken to study the role of phosphorus 3d orbitals in the bonding.It is emphasized that the discussion about the 3d orbital participation in bonding should be based on a reasonable choice of basis sets and it seems suitable to choose the atomic orbitals in proper molecular environment as the basis set.As an approximation,the optimized minimal STO-NG basis sets have been adopted in the present paper.The results obtained well exhibit the model of 3d orbital participation in bonding. It is shown that under the influence of highly electronegative ligands the phosphorus 3d orbitals con- tract greatly,their energy levels drop considerably,and thus they can effectively participate in bond- ing.The presence of highly electronegative ligands seems necessary.The contribution of 3d orbitals to bonding is achieved mainly through the concertedformation of σ bonds and p-d backbonds,though the contribution to σ bonding is minor.The three-center,four-electron bond modelis only approxi- mately correct.The results of the present paper demonstrate that the model of 3d orbital participation in bonding favoured by experimental chemists is reasonable and possesses sound ground.展开更多
The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in In...The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in InAsPSb/InAs system there is a determinate relation between the surface morphology and the lattice mismatch of the epi-wafers, by which we can easily control the melt composition to grow high quality hetero-structures. The reason has been discussed. The p-n junctions with fairly good carrier profile have been prepared in this system.展开更多
基金Projects(51874017,52174236)supported by the National Natural Science Foundation of China。
文摘The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.
文摘A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are capable of reacting with various types of organics. Toxic organic com-pounds are converted to small molecular wight organic acids, aldehydes, and/or alcohols, while yel-low phosphonis is oxidital into phosphoric acid, which may be recovered as a valuable byproduct.This technique has ben demonstrated to be effective for destroying many types of toxic organiccompounds. including PAH, aromatic chlorides, amines, alcohols, and acids, nitro-aromatics,heterocyclic hydrocarbons, PCB, aliphatic chlorides and sulfides, dyes, and pesticides.
基金Supported by the National Natural Science Foundation of China (51176181), the National Basic Research Program of China (2012CB719704), and the Research Fund for the Doctoral Program of Higher Education (20123402110047).
文摘In order to analyze the complex chemical kinetic mechanism systematically and find out the redundant species and reactions, a numerical platform for mechanism analysis and simplification is established basing on Path Flux Analysis (PFA). It is used to reduce a detailed mechanism for flame inhibited by phosphorus containing compounds, a reduced mechanism with 65 species and 335 reactions is obtained. The detailed and reduced mechanism are both used to calculate the freely-propagating premix C3H8/air flame with different dimethyl methylphosphonate doped over a wide range of equivalence ratios. The concentration distributions of free radicals and major species are compared, and the results under two different mechanisms agree well. The laminar flame speed obtained by the two mechanisms also matches well, with the maximum relative error introduces as a small value of 1.7%. On the basis of the reduced mechanism validation, the correlativity analysis is conducted between flame speed and flee radical concentrations, which can provide information for target species selection in the further mechanism reduction. By analyzing the species and reactions fluxes, the species and reaction paths which contribute the flame inhibition significantly are determined.
文摘Using cation exchange resin(D72,Amberlyst-15) as catalyst, Mannich-type reaction of 5-amino-1,2,4-triazole 1, containing guanidine substructure, provides an efficient synthesis of a new kind of bicyclic P- and N-containing compounds, 6-phospha-4,5,6-trihydroimidazolo [2,3-e] 1,2,4-triazole 4.
基金National Basic Research Program of China (2009CB825101)Xinjiang Production and Construction Corps Technology Innovation Fund for Youth Project (2011CB02)+2 种基金National Natural Science Foundation of China (31000730)Chun Hui Project Item of Ministry of Education of China (Z2006-1-83023)Great Science and Technology Research Program of the Shihezi University (gxjs2012-zdgg06-02)
文摘Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min- eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel- opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G intraradices, G. cladoideum, G microagregatum, G caledonium and G. etunica- tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab- lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con- centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.
文摘2-methoxy-6-oxo-1, 4, 2-diazaphosphorinane-2-oxide 8, phosphorus counterpart of 2, 6-dioxopiperazine, was synthesized as antitumor agent. The new phosphorus heterocycle compound 8 is the key intermediate in the synthesis of phosphorus counterpart of bisdioxopiperazine.
文摘Seventy organic compounds including various organophosphorus esters, amines and oxygen-based ligands were investigated as extractants. The experiment results show that amines are excellent extractants for W and Mo. Their sequence of extraction ability for W is as follows: quarternary amine > tertiary amine > secondary amine > primary amine. Acidic organophosphorus extractants do not extract W, but can extract Mo with high extraction ability from the acidic solution. These extractants could provide a potential process for separating W from Mo.
文摘Bone Mineral Content(BMC), serum cal-cium, phosphorus and AlP were measured in64 epileptic patients on long term treatmentwith one or two kinds of antiepileptic drugs(AEDs) ,and in 14 epileptic patients not tak-ing AEDs. In the epileptic patients takingAEDs, the BMC value was 0.645±0.020g/cm^2,significantly lower than 0.693±0.022g/cm^2, theBMC value of the control group (P【0.01).
文摘An electron-addition, under single-crystal conditions, to pentavalent phosphorus compounds as Cl-P (=O, S) Y, Z with the P-Cl bond as electron-accepting group, is selected as an additional model for SN2(P) like reactions. It is demonstrated that the geometric information stored in the tetrahedral configuration (substrate) can be transmitted in the corresponding trigonal bipyramidal (TBP) state for nucleophilic substitution. In this article, we focus on these specific mechanistic aspects of carbon and phosphorus. We consider our study as a contribution to the significance of these (bio)chemical intermediates.
基金supported by the National Natural Science Foundation of China(21971165,21921002)the National Key R&D Program of China(2018YFA0903500)+3 种基金the“1000-Youth Talents Program”(YJ201702)the Fundamental Research Funds from Sichuan University(2020SCUNL108)Beijing National Laboratory for Molecular Sciences(BNLMS202101)the Fundamental Research Funds for the Central Universities。
文摘Stereodivergently constructing the designed products having adjacent multi-stereocenters via a given reaction,with excellent control of both absolute and relative configurations,presents one of the substantial hurdles in asymmetric catalysis.Herein,we report a precisely stereodivergent asymmetric protocol by synergistic combination of phosphonium-involved ion-pair catalysis and base for accessing to chiral phosphorus compounds bearing two adjacent chiral centers particularly containing an acidic protonated enantioenriched carbon atom,having broad functional group compatibility in both dynamic and thermodynamic processes under mild reaction conditions.Two keys for the success in constructing these stereoisomers with high levels of regio-,diastereo-,and enantioselectivities were contained:firstly,the precise stereo-control in providing dynamic products was enabled by bifunctional phosphonium salt catalyst with semi-enclosed cavity;secondly,the readily stereospecific transformation of adducts from dynamic to thermodynamic version was initiated by achiral base.All four stereoisomers could be readily accessed even in gram-scale in high yields with maintaining excellent stereoselectivities,illustrating the potential of this synergistic catalytic methodology in organic synthesis.Moreover,mechanistic studies including density functional theory(DFT)calculations and control experiments provide insights into the mechanism.
基金the Foundation for University Key Teacher by the Ministry of Education of China and Natural Science Foundation of Tianjin (Grant No. 983603311).
文摘In normal phase condition, a series of chiral phosphorus organic compounds have been separated by high-performance liquid chromatography. In order to study the retention and chiral recognition mechanism, the method of quantitative structure-enantioselectivity retention relationships (QSERRs) has been investigated from the quantitative equations established between the chromatographic retention of enantiomers and their molecular descriptors of physicochemical properties. The results show that on the Pirkle-type chiral stationary phase (CSP) of Sumichiral OA4700, it is the parameter of LUMO that gives the most contribution to the chromatographic retention of O-ethyl O-(substituted) phenyl N-isopropyl phosphoroamidothioates resulting from the interaction of hydrogen bond and (or) π-π interaction. Meanwhile, the chiral recognition is formed from the contribution of logP and LUMO.
文摘The zwitterionic intermediate generated from the reaction of triphenylphosphine with electron deficient acety- lenic compounds was trapped by various NH acids. The synthesis resulted in a new class of highly functionalized heterocyclic compounds. Some of the reactions produced E and Z isomers. And the stability and transformation of them were studied by dynamic 1H NMR and density functional theory (DFT) calculations.
基金supported by the National Natural Science Foundation of China(NSFC,grant nos.22122202 and 22072051)Zhenjiang Key Research and Development Program,Industry Foresight and Common Key Technologies,China(grant no.CQ2022006).
文摘The inadequate performance of oxygen reduction reaction(ORR)catalysts hampers the development of proton exchange membrane fuel cells(PEMFCs).Herein,we proposed an approach to tackle this problem by modulating the chemical bond type of intermetallic Pt-based catalysts,using phosphorus(P)doped L1_(0)-PtFeGa_(0.1)/C(P-L1_(0)-PtFeGa_(0.1)/C)as a proof of concept.X-ray absorption spectroscopy(XAS)demonstrated that the doped P transferred electrons to Pt,and thus,modified the electronic structure of Pt,weakening the adsorption strength with oxygen-containing species.Therefore P-L1_(0)-PtFeGa_(0.1)/C showed 13 times mass activity(MA)compared with commercial Pt/C,with a decay of only 28%after 100,000 potential cycles.When equipped in the membrane electrode assembly,the P-L1_(0)-PtFeGa_(0.1)/C catalyst also exhibited a remarkable activity(MA=0.84 A mgPt^(−1)at 0.9 V)and stability(MA retention=72%and voltage loss=9 mVat 0.8 A cm^(−2)after 30,000 cycles),making it one of the best performers among recorded Pt-based catalysts.Theoretical studies demonstrated that the doping of P optimized the adsorption energy between Pt and oxygen intermediates through sp-d orbital interactions and prevented metal dissolution by forming stronger Pt-P covalent bonds compared with Pt–Pt bonds.
基金The National Natural Science Foundation of China.
文摘Ab initio LCAO-MO-SCF calculations for several typical molecules containing phosphorus have been undertaken to study the role of phosphorus 3d orbitals in the bonding.It is emphasized that the discussion about the 3d orbital participation in bonding should be based on a reasonable choice of basis sets and it seems suitable to choose the atomic orbitals in proper molecular environment as the basis set.As an approximation,the optimized minimal STO-NG basis sets have been adopted in the present paper.The results obtained well exhibit the model of 3d orbital participation in bonding. It is shown that under the influence of highly electronegative ligands the phosphorus 3d orbitals con- tract greatly,their energy levels drop considerably,and thus they can effectively participate in bond- ing.The presence of highly electronegative ligands seems necessary.The contribution of 3d orbitals to bonding is achieved mainly through the concertedformation of σ bonds and p-d backbonds,though the contribution to σ bonding is minor.The three-center,four-electron bond modelis only approxi- mately correct.The results of the present paper demonstrate that the model of 3d orbital participation in bonding favoured by experimental chemists is reasonable and possesses sound ground.
文摘The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in InAsPSb/InAs system there is a determinate relation between the surface morphology and the lattice mismatch of the epi-wafers, by which we can easily control the melt composition to grow high quality hetero-structures. The reason has been discussed. The p-n junctions with fairly good carrier profile have been prepared in this system.