This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material const...In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.展开更多
In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functiona...In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functionally graded(FG)material that has heterogeneous power-law distribution through the radial coordinate.It is assumed that the core is subjected to a magnetic field whereas the core is covered by two insulated composite layers.To determine the exact solution,first characteristic equations are derived for different material types in a polar coordinate system,namely,magneto-elastic,elastic,and electro-elastic for the FG,orthotropic,and piezoelectric materials,respectively.The displacement-based method is used instead of the stress-based method to derive a set of closed-form real-valued solutions for both real and complex roots.Based on the elasticity theory,exact solutions for the governing equations are determined layer-by-layer that are considerably more accurate than typical simplified theories.The accuracy of the presented method is compared and validated with the available literature and the finite element simulation.The effects of geometrical and material parameters such as FG index,angular span along with external conditions such as magnetic field,mechanical pressure,and electrical difference are investigated in detail through numerical examples.展开更多
This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation...This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures (cylinder or sphere), subjected to mechanical load and electric potential. The material properties, thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution. In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material, reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic material. The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity, and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin's approximation method. Finally, numerical results are carried out and discussed.展开更多
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the externa...Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.展开更多
Sense of touch is one of the important information from environment for human to live in daily life. Haptic interface is a hot topic in virtual reality but almost all of the devices focus on fingers and hands as targe...Sense of touch is one of the important information from environment for human to live in daily life. Haptic interface is a hot topic in virtual reality but almost all of the devices focus on fingers and hands as targets. In this paper, we focus on the foot haptic device with magnetic flied sensitive elastomer (MSE). We developed a haptic unit used as a magnetic field generator for MSE and contact point of foot haptic device. MSE samples mixed with 80 wt% carbonyl iron particles were prepared and evaluated with the developed magnet. Experimental results show that the mechanical property of the haptic unit can be modeled with the adjustable friction element. This property has a good advantage for the haptic unit.展开更多
In this study,the effects of high magnetic field gradients on the segregation of alloying elements,crystallized phases,and particles in alloys during solidification process and corresponding microstructures were discu...In this study,the effects of high magnetic field gradients on the segregation of alloying elements,crystallized phases,and particles in alloys during solidification process and corresponding microstructures were discussed.It was confirmed that applying an external high magnetic field gradient during solidification process is an effective processing route for controlling segregation in alloys and then fabricating functional materials which have special mierostruetures and properties.Such controlling and fabrication were realized by controlling the migration of the alloying elements, crystallized phases,and particles in the liquid matrix on the basis of the Lorentz and magnetic forces.展开更多
High-density fine-grained Ni0.5Zn0.5Fe2O4 ferrite ceramics were synthesized by spark plasma sintering (SPS) in conjunction with high energy ball milling. The precursor powders were milled for 20 h, 40 h, and 60 h, res...High-density fine-grained Ni0.5Zn0.5Fe2O4 ferrite ceramics were synthesized by spark plasma sintering (SPS) in conjunction with high energy ball milling. The precursor powders were milled for 20 h, 40 h, and 60 h, respectively, and the milled powders were all sintered for 5 min at 900°C. All the samples exhibit a single spinel phase. With increasing of the ball milling time, the relative density of the samples increases (up to 97.7%), however, the grain size decreases (down to ~200 nm). At room temperature, the sample from the 40 h-milled powder has the best combination of saturation magnetization and coercivity (83 emu/g and 15 Oe). These outstanding magnetic properties may be associated with high density and uniform microstructure created by SPS on the basis of fine precursor powders produced by high-energy ball milling.展开更多
This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification p...This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification process by stripping the influence of reversible components from the measurement data,the Preisach distribution function is identified by the pure irreversible components.In this way,the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured.Furthermore,through a discrete Preisach plane with a hybrid discretization method,the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model.Finally,the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.展开更多
Laser powder bed fusion(LPBF)in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties.Functionally graded Fe-Cr-Co permanent magnetic alloys were fabrica...Laser powder bed fusion(LPBF)in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties.Functionally graded Fe-Cr-Co permanent magnetic alloys were fabricated by LPBF and in-situ alloying mixed powders of Fe,Cr,and Co elements.The effects of different Fe,Cr and Co contents on the microstructure,magnetic properties and hardness of Fe-Cr-Co alloys prepared by LPBF were studied.The as-built Fe-Cr-Co alloys present a single body-centered-cubic phase and have a homogeneous distribution of elements.The mechanical properties and magnetic properties of the compositionally graded sample show a gradient variation.With the increase in Cr content,the Vickers hardness of the sample increases,and the saturation magnetization of the sample decreases.The optimal magnetic properties in an isotropic state are given as coercivity HcB=21.65 kA/m,remanence Br=0.70 T and energy product(BH)_(max)=5.35 kJ/m^(3),which are comparable to or higher than the reported magnetic properties in an isotropic state prepared by traditional powder metallurgy.LPBF in-situ alloying technology has the potential to further explore Fe-Cr-Co magnetic materials,such as those consisting of multiple or more constituent elements,and to maximize the compositional flexibility of magnetic materials.展开更多
Magnetorheological elastomers(MREs)are a type of intelligent material that can be actively controlled.However,the ferromagnetic particles in MREs are large,meaning that MREs contain many holes,which degrade the mechan...Magnetorheological elastomers(MREs)are a type of intelligent material that can be actively controlled.However,the ferromagnetic particles in MREs are large,meaning that MREs contain many holes,which degrade the mechanical properties and fatigue resistance of MREs.In this work,liquid nitrile butadiene rubber-phenolic resin microcapsules were added as a self-healing agent to an MRE.The microcapsules reduced the number of holes caused by ferromagnetic particles and improved the mechanical properties and fatigue resistance of MREs.The magnetorheological effect of the MRE was not affected and was similar to that of the MRE without the self-healing agent.Under 100%strain and with the same number of cycles,the crack growth rate of the MRE without the self-healing agent was approximately 236%faster than that of the corresponding MRE with the self-healing agent and the crack length was approximately 136%longer.展开更多
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金supported by the National Natural Science Foundation of China(No.11772041)
文摘In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.
文摘In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functionally graded(FG)material that has heterogeneous power-law distribution through the radial coordinate.It is assumed that the core is subjected to a magnetic field whereas the core is covered by two insulated composite layers.To determine the exact solution,first characteristic equations are derived for different material types in a polar coordinate system,namely,magneto-elastic,elastic,and electro-elastic for the FG,orthotropic,and piezoelectric materials,respectively.The displacement-based method is used instead of the stress-based method to derive a set of closed-form real-valued solutions for both real and complex roots.Based on the elasticity theory,exact solutions for the governing equations are determined layer-by-layer that are considerably more accurate than typical simplified theories.The accuracy of the presented method is compared and validated with the available literature and the finite element simulation.The effects of geometrical and material parameters such as FG index,angular span along with external conditions such as magnetic field,mechanical pressure,and electrical difference are investigated in detail through numerical examples.
文摘This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures (cylinder or sphere), subjected to mechanical load and electric potential. The material properties, thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution. In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material, reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic material. The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity, and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin's approximation method. Finally, numerical results are carried out and discussed.
基金The project supported by China postdoctoral science foundation(20060390260)Hunan Postdoctoral Scientific ProgramThe English text was polished by Yunming Chen.
文摘Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.
文摘Sense of touch is one of the important information from environment for human to live in daily life. Haptic interface is a hot topic in virtual reality but almost all of the devices focus on fingers and hands as targets. In this paper, we focus on the foot haptic device with magnetic flied sensitive elastomer (MSE). We developed a haptic unit used as a magnetic field generator for MSE and contact point of foot haptic device. MSE samples mixed with 80 wt% carbonyl iron particles were prepared and evaluated with the developed magnet. Experimental results show that the mechanical property of the haptic unit can be modeled with the adjustable friction element. This property has a good advantage for the haptic unit.
基金Item Sponsored by the National Natural Science Foundation of China (Grant Nos.51006020 and 51174056) the Fundamental Research Funds for the Central Universities (Grant Nos.N090109001+3 种基金N100409008and N100609001) the National Basic Research Program of China (Grant Nos.2011CB612206 and 2011CB610405) the Wuhan National High Magnetic Field Center (Grant No.WHMFCK2011006)
文摘In this study,the effects of high magnetic field gradients on the segregation of alloying elements,crystallized phases,and particles in alloys during solidification process and corresponding microstructures were discussed.It was confirmed that applying an external high magnetic field gradient during solidification process is an effective processing route for controlling segregation in alloys and then fabricating functional materials which have special mierostruetures and properties.Such controlling and fabrication were realized by controlling the migration of the alloying elements, crystallized phases,and particles in the liquid matrix on the basis of the Lorentz and magnetic forces.
文摘High-density fine-grained Ni0.5Zn0.5Fe2O4 ferrite ceramics were synthesized by spark plasma sintering (SPS) in conjunction with high energy ball milling. The precursor powders were milled for 20 h, 40 h, and 60 h, respectively, and the milled powders were all sintered for 5 min at 900°C. All the samples exhibit a single spinel phase. With increasing of the ball milling time, the relative density of the samples increases (up to 97.7%), however, the grain size decreases (down to ~200 nm). At room temperature, the sample from the 40 h-milled powder has the best combination of saturation magnetization and coercivity (83 emu/g and 15 Oe). These outstanding magnetic properties may be associated with high density and uniform microstructure created by SPS on the basis of fine precursor powders produced by high-energy ball milling.
基金supported by the National Natural Science Foundation of China under Grant 52007102,52207012by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERIKF2021015。
文摘This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification process by stripping the influence of reversible components from the measurement data,the Preisach distribution function is identified by the pure irreversible components.In this way,the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured.Furthermore,through a discrete Preisach plane with a hybrid discretization method,the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model.Finally,the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2021YFB3702500).
文摘Laser powder bed fusion(LPBF)in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties.Functionally graded Fe-Cr-Co permanent magnetic alloys were fabricated by LPBF and in-situ alloying mixed powders of Fe,Cr,and Co elements.The effects of different Fe,Cr and Co contents on the microstructure,magnetic properties and hardness of Fe-Cr-Co alloys prepared by LPBF were studied.The as-built Fe-Cr-Co alloys present a single body-centered-cubic phase and have a homogeneous distribution of elements.The mechanical properties and magnetic properties of the compositionally graded sample show a gradient variation.With the increase in Cr content,the Vickers hardness of the sample increases,and the saturation magnetization of the sample decreases.The optimal magnetic properties in an isotropic state are given as coercivity HcB=21.65 kA/m,remanence Br=0.70 T and energy product(BH)_(max)=5.35 kJ/m^(3),which are comparable to or higher than the reported magnetic properties in an isotropic state prepared by traditional powder metallurgy.LPBF in-situ alloying technology has the potential to further explore Fe-Cr-Co magnetic materials,such as those consisting of multiple or more constituent elements,and to maximize the compositional flexibility of magnetic materials.
基金National Natural Science Foundation of China (52003142)。
文摘Magnetorheological elastomers(MREs)are a type of intelligent material that can be actively controlled.However,the ferromagnetic particles in MREs are large,meaning that MREs contain many holes,which degrade the mechanical properties and fatigue resistance of MREs.In this work,liquid nitrile butadiene rubber-phenolic resin microcapsules were added as a self-healing agent to an MRE.The microcapsules reduced the number of holes caused by ferromagnetic particles and improved the mechanical properties and fatigue resistance of MREs.The magnetorheological effect of the MRE was not affected and was similar to that of the MRE without the self-healing agent.Under 100%strain and with the same number of cycles,the crack growth rate of the MRE without the self-healing agent was approximately 236%faster than that of the corresponding MRE with the self-healing agent and the crack length was approximately 136%longer.