A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave techni...A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave technique. Photocatalytic activities of synthesized photocatalysts are evaluated by the degradation of Methyl Orange under ultraviolet light types A(UV-A), B(UV-B), and C(UV-C), visible light, and direct sunlight irradiation. Results show that by using N–TiO_2 photocatalyst prepared by the UV-assisted thermal synthesis and annealing, the degradation increases by 16.5% and 20.4%, respectively, compared to that by bare TiO2. The best results are obtained at a nitrogen to TiO2 mass ratio of 0.15(N:TiO2). The enhancement of the photocatalytic activity observed in the visible range is mainly attributed to the increasing separation rate of photogenerated charge carriers. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method for the nitrogen-doped TiO2 photocatalyst; thus, further studies are recommended for process optimization, immobilization, and scale-up to evaluate its applicability in wastewater treatment.展开更多
基金The financial support of Natural Sciences and Engineering Research Council of Canada (NSERC)Ontario Graduate Scholarship (OGS) programRyerson University is greatly appreciated
文摘A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave technique. Photocatalytic activities of synthesized photocatalysts are evaluated by the degradation of Methyl Orange under ultraviolet light types A(UV-A), B(UV-B), and C(UV-C), visible light, and direct sunlight irradiation. Results show that by using N–TiO_2 photocatalyst prepared by the UV-assisted thermal synthesis and annealing, the degradation increases by 16.5% and 20.4%, respectively, compared to that by bare TiO2. The best results are obtained at a nitrogen to TiO2 mass ratio of 0.15(N:TiO2). The enhancement of the photocatalytic activity observed in the visible range is mainly attributed to the increasing separation rate of photogenerated charge carriers. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method for the nitrogen-doped TiO2 photocatalyst; thus, further studies are recommended for process optimization, immobilization, and scale-up to evaluate its applicability in wastewater treatment.