期刊文献+
共找到1,842篇文章
< 1 2 93 >
每页显示 20 50 100
ZnSb/Ti_(3)C_(2)T_(x)MXene van der Waals heterojunction for flexible near-infrared photodetector arrays 被引量:2
1
作者 Chuqiao Hu Ruiqing Chai +2 位作者 Zhongming Wei La Li Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期99-105,共7页
Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene base... Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application. 展开更多
关键词 ZnSb nanoplates Ti_(3)C_(2)T_(x)MXene van der Waals heterojunction flexible photodetector image sensing
下载PDF
High responsivity photodetectors based on graphene/WSe_(2) heterostructure by photogating effect 被引量:1
2
作者 李淑萍 雷挺 +5 位作者 严仲兴 王燕 张黎可 涂华垚 时文华 曾中明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期728-733,共6页
Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency a... Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices. 展开更多
关键词 WSe_(2) HETEROSTRUCTURE photodetector photogating effect
下载PDF
BaTiO_(3)/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
3
作者 韩无双 刘可为 +6 位作者 杨佳霖 朱勇学 程祯 陈星 李炳辉 刘雷 申德振 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期202-207,共6页
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ... Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents. 展开更多
关键词 ferroelectric effect BIPOLAR self-driven photodetector
下载PDF
Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
4
作者 朱万里 甄伟立 +5 位作者 牛瑞 焦珂珂 岳智来 胡慧杰 薛飞 张昌锦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期532-539,共8页
Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quas... Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications. 展开更多
关键词 linear dichroism reversal polarization sensitivity ANISOTROPY polarized photodetector
下载PDF
A peak enhancement of frequency response of waveguide integrated silicon-based germanium avalanche photodetector
5
作者 Linkai Yi Daoqun Liu +8 位作者 Wenzheng Cheng Daimo Li Guoqi Zhou Peng Zhang Bo Tang Bin Li Wenwu Wang Yan Yang Zhihua Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期61-68,共8页
Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and... Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and multiplication(SACM)APDs are popular due to their straightforward fabrication process, low optical propagation loss, and high detection sensitivity in optical communications. This paper introduces a lateral SACM Ge-on-Si APD on a silicon-on-insulator(SOI) wafer, featuring a 10 μm-long, 0.5 μm-wide Ge layer at 1310 nm on a standard 8-inch silicon photonics platform. The dark current measures approximately 38.6 μA at-21 V, indicating a breakdown voltage greater than-21 V for the device. The APDs exhibit a unitgain responsivity of 0.5 A/W at-10 V. At-15 V, their responsivity reaches 2.98 and 2.91 A/W with input powers of-10 and-25 dBm, respectively. The device's 3-dB bandwidth is 15 GHz with an input power of-15 dBm and a gain is 11.68. Experimental results show a peak in impedance at high bias voltages, attributed to inductor and capacitor(LC) circuit resonance, enhancing frequency response. Furthermore, 20 Gbps eye diagrams at-21 V and-9 dBm input power reveal signal to noise ratio(SNRs) of 5.30. This lateral SACM APD, compatible with the stand complementary metal oxide semiconductor(CMOS) process,shows that utilizing the peaking effect at low optical power increases bandwidth. 展开更多
关键词 photodetectorS optical communications RESPONSIVITY 3-dB bandwidth
下载PDF
Solar-blind ultraviolet photodetector derived from direct carrier transition beyond the bandgap of CdPS_(3) single crystals
6
作者 Xinyun Zhou Shuo Liu +7 位作者 Jiacheng Yang Junda Yang Fen Zhang Le Yuan Ruiying Ma Jiaqi Shi Qinglin Xia Mianzeng Zhong 《Nano Research》 SCIE EI CSCD 2024年第11期10042-10048,共7页
Wide-bandgap semiconductors have demonstrated considerable potential for fabricating solar-blind ultraviolet (SBUV) photodetectors, which are extensively used in both civilian and military applications. Despite this p... Wide-bandgap semiconductors have demonstrated considerable potential for fabricating solar-blind ultraviolet (SBUV) photodetectors, which are extensively used in both civilian and military applications. Despite this promise, the limited variety of semiconductors with suitable bandgaps hampers the advancement of high-performance SBUV detectors. In this study, we synthesized CdPS_(3) transparent single crystals using the chemical vapor transport (CVT) method. Density functional theory (DFT) calculations suggest that the bandgap of CdPS_(3) decreases as the material’s thickness increases, a finding corroborated by subsequent absorption spectra and photoelectric response measurements. The as-prepared CdPS_(3) nanosheets were employed as channels in photodetectors, demonstrating outstanding photoelectric performance in the solar-blind ultraviolet range (at 254 and 275 nm) with high responsivity (0.3 A/W), high specific detectivity (5.5 × 10^(9) Jones), rapid response speed (2.6 ms/3.4 ms), and exceptionally low dark current (2 pA). It is noteworthy that these nanosheets exhibit almost no sensitivity to 365 nm and visible light irradiation, attributable to the direct carrier transition beyond the broad bandgap in CdPS_(3). Furthermore, high-quality imaging was achieved under different gate voltages using 275 nm ultraviolet light, underscoring the potential of CdPS_(3) as a new material for high-performance SBUV optoelectronic detection. 展开更多
关键词 solar-blind ultraviolet photodetectors CdPS_(3) high-quality imaging
原文传递
Metal–Organic Framework‑Based Photodetectors
7
作者 Jin‑Biao Zhang Yi‑Bo Tian +1 位作者 Zhi‑Gang Gu Jian Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期675-703,共29页
The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we sum... The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we summarized and discussed the research progress on MOF-based photodetectors.The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details.Additionally,the photodetectors applications for X-ray,ultraviolet and infrared light,biological detectors,and circularly polarized light photodetectors are discussed.Furthermore,summaries and challenges are provided for this important research field. 展开更多
关键词 Metal-organic frameworks SEMICONDUCTOR photodetectorS
下载PDF
Visible-to-near-infrared photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures with a fast response speed and high normalized detectivity
8
作者 Xinfa Zhu Weishuai Duan +6 位作者 Xiancheng Meng Xiyu Jia Yonghui Zhang Pengyu Zhou Mengjun Wang Hongxing Zheng Chao Fan 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期76-83,共8页
The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(... The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization. 展开更多
关键词 two-dimensional materials tin diselenide HETEROSTRUCTURES broad-spectrum photodetectors
下载PDF
Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction
9
作者 YANG Jialin WANG Liangjun +2 位作者 RUAN Siyuan JIANG Xiulin YANG Chang 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第9期1063-1069,共7页
In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photo... In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry. 展开更多
关键词 er iodide HETEROJUNCTION photodetector
下载PDF
Ultraviolet Photodetector based on Sr_(2)Nb_(3)O_(10) Perovskite Nanosheets
10
作者 张斌斌 JIA Mengmeng +3 位作者 LIANG Qi WU Jinsong ZHAI Junyi 李宝文 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期282-287,共6页
Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spec... Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2). 展开更多
关键词 perovskite nanosheets liquid-phase exfoliation ultraviolet photodetector
下载PDF
Two-step growth of β-Ga_(2)O_(3) on c-plane sapphire using MOCVD for solar-blind photodetector
11
作者 Peipei Ma Jun Zheng +3 位作者 Xiangquan Liu Zhi Liu Yuhua Zuo Buwen Cheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期51-56,共6页
In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-... In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors. 展开更多
关键词 MOCVD two-step growth β-Ga_(2)O_(3) solar-blind photodetector responsivity
下载PDF
Lewis acid-doped transition metal dichalcogenides for ultraviolet–visible photodetectors
12
作者 Heng Yang Mingjun Ma +6 位作者 Yongfeng Pei Yufan Kang Jialu Yan Dong He Changzhong Jiang Wenqing Li Xiangheng Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期628-635,共8页
Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method f... Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs. 展开更多
关键词 two-dimensional(2D)materials p-type doping transition metal dichalcogenides photodetectorS
下载PDF
CuO–TiO_(2) based self-powered broad band photodetector
13
作者 Chiranjib Ghosh Arka Dey +7 位作者 Iman Biswas Rajeev Kumar Gupta Vikram Singh Yadav Ashish Yadav Neha Yadav Hongyu Zheng Mohamed Henini Aniruddha Mondal 《Nano Materials Science》 EI CAS CSCD 2024年第3期345-354,共10页
An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horiz... An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horizontal tube furnace on a 40 nm TiO_(2)thin film deposited on a p-type Si(100)substrate.The CuO–TiO_(2)/TiO_(2)/p-Si(100)devices exhibited excellent rectification characteristics under dark and individual photoillumination conditions.The devices showed remarkable photo-response under broadband(300–1100 nm)light illumination at zero bias voltage,indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations.The maximum response of the devices is observed at 300 nm for an illumination power of 10 W.The response and recovery times were calculated as 86 ms and 78 ms,respectively.Moreover,under a small bias,the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions.The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices.Under illumination conditions,the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO_(2)/TiO_(2)interface.These characteristics make the CuO–TiO_(2)/TiO_(2)broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality. 展开更多
关键词 SELF-POWERED CuO–TiO_(2) nanocomposite Broadband photodetector Two-zone horizontal tube furnace RESPONSIVITY
下载PDF
Highly Sensitive Photodetectors Based on WS_(2) Quantum Dots/GaAs Heterostructures
14
作者 LI Xianshuai LIN Fengyuan +4 位作者 HOU Xiaobing LI Kexue LIAO Lei HAO Qun WEI Zhipeng 《发光学报》 EI CAS CSCD 北大核心 2024年第10期1699-1706,共8页
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ... The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs. 展开更多
关键词 GaAs nanowires WS_(2) quantum dots photodetectorS type-Ⅱenergy band structure
下载PDF
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
15
作者 Jiao Jiao Liu Xinxin Yang +3 位作者 Qiulei Xu Ruiguang Chang Zhenghui Wu Huaibin Shen 《Opto-Electronic Science》 2024年第4期1-11,共11页
Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,th... Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors. 展开更多
关键词 infrared colloidal quantum dots up-conversion photodetector integration loss INTERCONNECTION voltage allocation
下载PDF
High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-Popper thin films 被引量:6
16
作者 Chao Liang Hao Gu +5 位作者 Junmin Xia Tanghao Liu Shiliang Mei Nan Zhang Yonghua Chen Guichuan Xing 《Carbon Energy》 SCIE CSCD 2023年第2期250-259,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskites have attracted intense research interest for optoelectronic applications,due to their tunable optoelectronic properties and better environmental stability than their ... Two-dimensional Ruddlesden-Popper(2DRP)perovskites have attracted intense research interest for optoelectronic applications,due to their tunable optoelectronic properties and better environmental stability than their threedimensional counterparts.Furthermore,high-performance photodetectors based on single-crystal and polycrystalline thin-films 2DRP perovskites have shown great potential for practical application.However,the complex growth process of single-crystal membranes and uncontrollable phase distribution of polycrystalline films hinder the further development of 2DRP perovskites photodetectors.Herein,we report a series of high-performance photodetectors based on single-crystal-like phase-pure 2DRP perovskite films by designing a novel spacer source.Experimental and theoretical evidence demonstrates that phase-pure films substantially suppress defect states and ion migration.These highly sensitive photodetectors show I_(light)/I_(dark) ratio exceeding 3×10^(4),responsivities exceeding 16 A/W,and detectivities exceeding 3×10^(13) Jones,which are higher at least by 1 order than those of traditional mixed-phase thinfilms 2DRP devices(close to the reported single-crystal devices).More importantly,this strategy can significantly enhance the operational stability of optoelectronic devices and pave the way to large-area flexible productions. 展开更多
关键词 FLEXIBILITY photodetectorS single-crystal-like stability two-dimensional perovskites
下载PDF
75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique 被引量:4
17
作者 Xiuli Li Yupeng Zhu +6 位作者 Zhi Liu Linzhi Peng Xiangquan Liu Chaoqun Niu Jun Zheng Yuhua Zuo Buwen Cheng 《Journal of Semiconductors》 EI CAS CSCD 2023年第1期79-84,共6页
High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is signif... High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity.Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed.In this work,the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated,which indicates the high-speed performance of photodetectors using the inductive-gainpeaking technique. 展开更多
关键词 GERMANIUM photodetectorS inductive-gain-peaking optical interconnection
下载PDF
Solvent-free fabrication of broadband WS2 photodetectors on paper 被引量:4
18
作者 Wenliang Zhang Onur Çakıroğlu +6 位作者 Abdullah Al-Enizi Ayman Nafady Xuetao Gan Xiaohua Ma Sruthi Kuriakose Yong Xie Andres Castellanos-Gomez 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期1-11,共11页
Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion te... Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.A solvent-free WS_(2) film deposited on paper favors an effective electron-hole separation and hampers recombination.The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet(365 nm)to near-infrared(940 nm).Their responsivity value reaches up to~270 mA W^(−1) at 35 V under a power density of 35 mW cm^(−2).A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS_(2) photodetector.Furthermore,we have built a spectrometer using such a paperbased WS_(2) device as the photodetecting component to illustrate its potential application.The present work could promote the development of cost-effective disposable photodetection devices. 展开更多
关键词 paper electronics photodetector van der Waals materials solvent-free deposition tungsten disulfide
下载PDF
ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics 被引量:2
19
作者 Bhavani Prasad Yalagala Abhishek Singh Dahiya Ravinder Dahiya 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第2期11-25,共15页
Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable m... Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable materials and wasteful fabrication methods. Herein, we present ZnO nanowires(NWs) based degradable high-performance UV photodetectors(PDs) on flexible chitosan substrate. Systematic investigations reveal the presented device exhibits excellent photo response, including high responsivity(55 A/W), superior specific detectivity(4×10^(14) jones), and the highest gain(8.5×10~(10)) among the reported state of the art biodegradable PDs. Further, the presented PDs display excellent mechanical flexibility under wide range of bending conditions and thermal stability in the measured temperature range(5–50 ℃).The biodegradability studies performed on the device, in both deionized(DI) water(pH≈6) and PBS solution(pH=7.4),show fast degradability in DI water(20 mins) as compared to PBS(48 h). These results show the potential the presented approach holds for green and cost-effective fabrication of wearable, and disposable sensing systems with reduced adverse environmental impact. 展开更多
关键词 transient electronics degradable devices ZnO nanowire CHITOSAN UV photodetector printed electronics
下载PDF
Self-healing wearable self-powered deep ultraviolet photodetectors based on Ga_(2)O_(3) 被引量:2
20
作者 Chao Wu Huaile He +4 位作者 Haizheng Hu Aiping Liu Shunli Wang Daoyou Guo Fengmin Wu 《Journal of Semiconductors》 EI CAS CSCD 2023年第7期54-59,共6页
Gallium oxide(Ga_(2)O_(3))based flexible heterojunction type deep ultraviolet(UV)photodetectors show excellent solar-blind photoelectric performance,even when not powered,which makes them ideal for use in intelligent ... Gallium oxide(Ga_(2)O_(3))based flexible heterojunction type deep ultraviolet(UV)photodetectors show excellent solar-blind photoelectric performance,even when not powered,which makes them ideal for use in intelligent wearable devices.How-ever,traditional flexible photodetectors are prone to damage during use due to poor toughness,which reduces the service life of these devices.Self-healing hydrogels have been demonstrated to have the ability to repair damage and their combination with Ga_(2)O_(3) could potentially improve the lifetime of the flexible photodetectors while maintaining their performance.Herein,a novel self-healing and self-powered flexible photodetector has been constructed onto the hydrogel substrate,which exhibits an excellent responsivity of 0.24 mA/W under 254 nm UV light at zero bias due to the built-in electric field originating from the PEDOT:PSS/Ga_(2)O_(3) heterojunction.The self-healing of the Ga_(2)O_(3) based photodetector was enabled by the reversible property of the synthesis of agarose and polyvinyl alcohol double network,which allows the photodetector to recover its original configu-ration and function after damage.After self-healing,the photocurrent of the photodetector decreases from 1.23 to 1.21μA,while the dark current rises from 0.95 to 0.97μA,with a barely unchanged of photoresponse speed.Such a remarkable recov-ery capability and the photodetector’s superior photoelectric performance not only significantly enhance a device lifespan but also present new possibilities to develop wearable and intelligent electronics in the future. 展开更多
关键词 Ga_(2)O_(3) hydrogels SELF-POWERED SELF-HEALING UV photodetector
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部