CdSe quantum-dot(QD)film,as the core function layer,plays a key role in various optoelectronic devices.The thickness uniformity of QD films is one of the key factors to determine the overall photoelectric performance....CdSe quantum-dot(QD)film,as the core function layer,plays a key role in various optoelectronic devices.The thickness uniformity of QD films is one of the key factors to determine the overall photoelectric performance.Therefore,it is important to obtain the thickness distribution of large-area QD films.However,it is difficult for traditional methods to quickly get the information related to its thickness distribution without introducing additional damage.In this paper,a non-contact and non-destructive inspection method for in-situ detecting the thickness uniformity of CdSe QD film is proposed.The principle behind this in-situ inspection method is that the photoluminescence quenching phenomenon of the QD film would occur under a high electric field,and the degree of photoluminescence quenching is related to the thickness of the quantum dot films.Photoluminescence images of the same QD film without and with an electric field are recorded by a charge-coupled device camera,respectively.By transforming the brightness distribution of these two images,we can intuitively see the thickness information of the thin film array of QD.The proposed method provides a meaningful inspection for the manufacture of QD based lightemitting display.展开更多
Heterostructure is the basic building block for functional optoelectronic devices.Heterostructures consisting of two-dimensional(2D)transition metal dichalcogenides(TMDs)and organic semiconductors are currently attrac...Heterostructure is the basic building block for functional optoelectronic devices.Heterostructures consisting of two-dimensional(2D)transition metal dichalcogenides(TMDs)and organic semiconductors are currently attracting great interest for highperformance optoelectronics.However,how to design heterostructure for highly efficient optoelectronic devices remains a big challenge.Here we design high-performance organic semiconductor/WSe_(2)heterostructure photodetectors by tailoring the charge transfer effect between 2,2ʹ-((2Z,2ʹZ)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydros-indaceno[1,2-b:5,6-bʹ]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(IEICO-4F)organic semiconductors with various thicknesses and monolayer WSe_(2).With the increase of IEICO-4F layer thickness,the photoluminescence(PL)characteristics of WSe_(2)could be completely quenched due to the charge transfer from the lowest unoccupied molecular orbital(LUMO)level of IEICO-4F to the conduction band minimum(CBM)of WSe_(2).Benefiting from the exquisite charge transfer behavior,the IEICO-4F/WSe_(2)heterojunction photodetector with optimized 6.0-nm thick IEICO-4F shows high performance including the responsivity of 8.32 A/W and specific detectivity of 4.65×10^(11)Jones at incident light of 808 nm.This work demonstrates a simple approach based on PL characteristics to design high-performance IEICO-4F/WSe_(2)heterojunction,thus paving the way for the development of excellent optoelectronic devices based on organic/TMD heterostructures.展开更多
Piezophotonics is a great interesting field of physics that has led to a number of important technologies,such as light source,smart sensors,and mechatronics.In this work,we reported Pr-doped(Bi_(0.5)Na_(0.5))TiO_(3)-...Piezophotonics is a great interesting field of physics that has led to a number of important technologies,such as light source,smart sensors,and mechatronics.In this work,we reported Pr-doped(Bi_(0.5)Na_(0.5))TiO_(3)-based lead-free ceramics with strong red photoluminescence emission and large strain response(d_(33)^(*)=460 pm/V,S=0.32%).The PL emission can be quenched by decreasing the intensity by 93%after electrical polarization(E=50 kV/cm).The local structure and electric field-induced structural changes were systematically investigated to reveal the significant distinction in photoluminescence properties caused by electrical polarization.The results indicated that polarization treatment eliminates the structural inhomogeneities and establishes a long-range ferroelectric tetragonal and rhombohedral distortion.The crystal structure transformed irreversibly from a non-ergodic to a normal ferroelectric state.PL quenching originated from the decreased distortion of octahedral due to the transition from a non-ergodic state to a highly ordered symmetrical structure.Meanwhile,the enlarged domain structure contributed to the photoluminescence quenching effect.Our findings demonstrate that an electric field can be a robust tool for adjusting the photoluminescence property and provide insights into the rela-tionship between the structure and PL properties of BNT-based ceramics under an external stimulus.展开更多
Influence of norbornadiene and its derivatives on the photoluminescence (PL) of quantum-confined cadmium sulfide clusters (Q-CdS) prepared in reverse micelles wm investigated. It was found that norbornadiene-2,3-dicar...Influence of norbornadiene and its derivatives on the photoluminescence (PL) of quantum-confined cadmium sulfide clusters (Q-CdS) prepared in reverse micelles wm investigated. It was found that norbornadiene-2,3-dicarboxylic acid (3) and its monopotassium salt (4) quenched PL intensity by 77% and 62%, respectively, whereas its dipotassium salt (a), norbornadiene (1) and norbornadiene-2,3-dimethylcarboxylate (2) had no effect on PL intensity. The formation constants for adducts formed between defect sites at the surface of Q-CdS clusters and 3 or 4 were also determined. PL quenching effect was attributed to the presence of ionizable proton which is considered to be able to trap photogenerated electrons and remove them from possible decay process. Measurements of the PL decay by single photon counting technique also supported these steady-state observations.展开更多
A novel oxadiazole-based copolymer has been successfully synthesized through the palladium-catalyzed cross-coupling polycondensation method. The copolymer P is soluble in common organic solvents. Its structure has cha...A novel oxadiazole-based copolymer has been successfully synthesized through the palladium-catalyzed cross-coupling polycondensation method. The copolymer P is soluble in common organic solvents. Its structure has characterized by ^1H NMR, ^13C NMR, gel permeation chromatagraphy (GPC), UV-vis absorbance (Abs) and photoluniminescence (PL) spectroscopy, and cyclic voltammetry (CV). Investigation of its optical properties revealed that it is yellow emitting material, and the electrochemical analysis showed that P was well suited poly (2,5-dioctyloxy-p-phenylenevinylene) (PDOCPV) for photovoltaic devices, so the copolymer P is able to act as an electron acceptor in combination with PDOCPVas the electron donor to quench photoluminescence of the copolymer in the blend, indicative of the efficient photoinduced electron transfer from the PDOCPV to the P.展开更多
Multiwalled carbon nanotubes (MWCNTs) mixed in poly(3-hexylthiophene) (P3HT) were used as a photoactive layer for organic solar cells (OSC). The flexible OSCs of a structure of PET/rGO-P3HT/P3CT/PCBM/LiF-Al were prepa...Multiwalled carbon nanotubes (MWCNTs) mixed in poly(3-hexylthiophene) (P3HT) were used as a photoactive layer for organic solar cells (OSC). The flexible OSCs of a structure of PET/rGO-P3HT/P3CT/PCBM/LiF-Al were prepared by spincoating. The UV-Vis absorption spectra of the photoactive films and current-voltage characteristics of the OSCs showed the advantage of the composite devices above the pristine-polymeric ones. Under illumination of light with a 100 mW/cm<sup>2</sup>-powerdensity, the photoelectrical conversion efficiency (PCE) of the OSCs with 3.0 wt% MWNCTs embedded in the photoactive layer possess a value as large as 2.35%. The obtained results suggest further useful applications of the flexible large-area solar cells.展开更多
Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report...Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.展开更多
High-performance photonic nonvolatile memory which combines data storage and photosensing can achieve low power consumption and ensure computational energy efficiency.Heterostructure has been theoretically and experim...High-performance photonic nonvolatile memory which combines data storage and photosensing can achieve low power consumption and ensure computational energy efficiency.Heterostructure has been theoretically and experimentally proved to have synergistic effects between two materials,which can lead to promising electronic and optical properties for advanced optoelectronic devices.Herein,we report the preparation of borophene-ZnO heterostructures and their applications of broadband photonic nonvolatile memory.The memory shows a good switching ratio(5×10^(3))and long-term stability(3,600 s),which are superior to those of the pristine borophene or ZnO quantum dots(QDs).It is found that the memory shows a broad light response from ultraviolet(365 nm)to near infrared(850 nm).Besides,the SET voltage will decrease when the device is exposed to light,which can be attributed to the separation of holes and electrons in accelerating the formation of vacancy conductive filament.This work not only provides a promising material for next-generation photoelectric information,but also paves the way for borophene-based memory towards data storage devices.展开更多
基金financially supported by the National Key Research and Development Program of China(2021YFB3600400)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China Project(2020ZZ113 and 2021ZZ130)。
文摘CdSe quantum-dot(QD)film,as the core function layer,plays a key role in various optoelectronic devices.The thickness uniformity of QD films is one of the key factors to determine the overall photoelectric performance.Therefore,it is important to obtain the thickness distribution of large-area QD films.However,it is difficult for traditional methods to quickly get the information related to its thickness distribution without introducing additional damage.In this paper,a non-contact and non-destructive inspection method for in-situ detecting the thickness uniformity of CdSe QD film is proposed.The principle behind this in-situ inspection method is that the photoluminescence quenching phenomenon of the QD film would occur under a high electric field,and the degree of photoluminescence quenching is related to the thickness of the quantum dot films.Photoluminescence images of the same QD film without and with an electric field are recorded by a charge-coupled device camera,respectively.By transforming the brightness distribution of these two images,we can intuitively see the thickness information of the thin film array of QD.The proposed method provides a meaningful inspection for the manufacture of QD based lightemitting display.
基金the National Key R&D Program of China(No.2021YFA1200502)the National Natural Science Foundation of China(Nos.62090030/62090031,51872257,and 51672244)+1 种基金the Natural Science Foundation of Zhejiang Province,China(No.LZ20F040001)the Zhejiang Province Key R&D programs(No.2020C01120).
文摘Heterostructure is the basic building block for functional optoelectronic devices.Heterostructures consisting of two-dimensional(2D)transition metal dichalcogenides(TMDs)and organic semiconductors are currently attracting great interest for highperformance optoelectronics.However,how to design heterostructure for highly efficient optoelectronic devices remains a big challenge.Here we design high-performance organic semiconductor/WSe_(2)heterostructure photodetectors by tailoring the charge transfer effect between 2,2ʹ-((2Z,2ʹZ)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydros-indaceno[1,2-b:5,6-bʹ]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(IEICO-4F)organic semiconductors with various thicknesses and monolayer WSe_(2).With the increase of IEICO-4F layer thickness,the photoluminescence(PL)characteristics of WSe_(2)could be completely quenched due to the charge transfer from the lowest unoccupied molecular orbital(LUMO)level of IEICO-4F to the conduction band minimum(CBM)of WSe_(2).Benefiting from the exquisite charge transfer behavior,the IEICO-4F/WSe_(2)heterojunction photodetector with optimized 6.0-nm thick IEICO-4F shows high performance including the responsivity of 8.32 A/W and specific detectivity of 4.65×10^(11)Jones at incident light of 808 nm.This work demonstrates a simple approach based on PL characteristics to design high-performance IEICO-4F/WSe_(2)heterojunction,thus paving the way for the development of excellent optoelectronic devices based on organic/TMD heterostructures.
基金This work was supported by the Natural Science Foundation of Shandong Province of China(No.ZR2020ME031,ZR2020ME033,ZR2020QE043,ZR2020QE044)the Innovation Team of Higher Educational Science and Technology Program in Shandong Province(No.2019KJA025)Key Laboratory of Inorganic Functional Ma-terials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD202008).
文摘Piezophotonics is a great interesting field of physics that has led to a number of important technologies,such as light source,smart sensors,and mechatronics.In this work,we reported Pr-doped(Bi_(0.5)Na_(0.5))TiO_(3)-based lead-free ceramics with strong red photoluminescence emission and large strain response(d_(33)^(*)=460 pm/V,S=0.32%).The PL emission can be quenched by decreasing the intensity by 93%after electrical polarization(E=50 kV/cm).The local structure and electric field-induced structural changes were systematically investigated to reveal the significant distinction in photoluminescence properties caused by electrical polarization.The results indicated that polarization treatment eliminates the structural inhomogeneities and establishes a long-range ferroelectric tetragonal and rhombohedral distortion.The crystal structure transformed irreversibly from a non-ergodic to a normal ferroelectric state.PL quenching originated from the decreased distortion of octahedral due to the transition from a non-ergodic state to a highly ordered symmetrical structure.Meanwhile,the enlarged domain structure contributed to the photoluminescence quenching effect.Our findings demonstrate that an electric field can be a robust tool for adjusting the photoluminescence property and provide insights into the rela-tionship between the structure and PL properties of BNT-based ceramics under an external stimulus.
基金Project supported by the National Natural Science Foundation of China
文摘Influence of norbornadiene and its derivatives on the photoluminescence (PL) of quantum-confined cadmium sulfide clusters (Q-CdS) prepared in reverse micelles wm investigated. It was found that norbornadiene-2,3-dicarboxylic acid (3) and its monopotassium salt (4) quenched PL intensity by 77% and 62%, respectively, whereas its dipotassium salt (a), norbornadiene (1) and norbornadiene-2,3-dimethylcarboxylate (2) had no effect on PL intensity. The formation constants for adducts formed between defect sites at the surface of Q-CdS clusters and 3 or 4 were also determined. PL quenching effect was attributed to the presence of ionizable proton which is considered to be able to trap photogenerated electrons and remove them from possible decay process. Measurements of the PL decay by single photon counting technique also supported these steady-state observations.
文摘A novel oxadiazole-based copolymer has been successfully synthesized through the palladium-catalyzed cross-coupling polycondensation method. The copolymer P is soluble in common organic solvents. Its structure has characterized by ^1H NMR, ^13C NMR, gel permeation chromatagraphy (GPC), UV-vis absorbance (Abs) and photoluniminescence (PL) spectroscopy, and cyclic voltammetry (CV). Investigation of its optical properties revealed that it is yellow emitting material, and the electrochemical analysis showed that P was well suited poly (2,5-dioctyloxy-p-phenylenevinylene) (PDOCPV) for photovoltaic devices, so the copolymer P is able to act as an electron acceptor in combination with PDOCPVas the electron donor to quench photoluminescence of the copolymer in the blend, indicative of the efficient photoinduced electron transfer from the PDOCPV to the P.
文摘Multiwalled carbon nanotubes (MWCNTs) mixed in poly(3-hexylthiophene) (P3HT) were used as a photoactive layer for organic solar cells (OSC). The flexible OSCs of a structure of PET/rGO-P3HT/P3CT/PCBM/LiF-Al were prepared by spincoating. The UV-Vis absorption spectra of the photoactive films and current-voltage characteristics of the OSCs showed the advantage of the composite devices above the pristine-polymeric ones. Under illumination of light with a 100 mW/cm<sup>2</sup>-powerdensity, the photoelectrical conversion efficiency (PCE) of the OSCs with 3.0 wt% MWNCTs embedded in the photoactive layer possess a value as large as 2.35%. The obtained results suggest further useful applications of the flexible large-area solar cells.
基金supported by the National Natural Science Foundation of China (21875212)the Key Program of National Natural Science Foundation (51632008)+2 种基金the Major R&D Plan of Zhejiang Natural Science Foundation (LD18E020001)the National Key Research and Development Program (2016YFA0200204)the Fundamental Research Funds for the Central Universities。
文摘Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.
基金supported by the National Natural Science Foundation of China(No.61774085),Natural Science Foundation of Jiangsu Province(No.BK20201300)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(NUAA)(No.MCMS-I-0420G02)+4 种基金the Fundamental Research Funds for the Central Universities(No.NP2022401)the Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics)(No.ILA22009)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ22-02)the Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics(No.KXKCXJJ202201)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0329).
文摘High-performance photonic nonvolatile memory which combines data storage and photosensing can achieve low power consumption and ensure computational energy efficiency.Heterostructure has been theoretically and experimentally proved to have synergistic effects between two materials,which can lead to promising electronic and optical properties for advanced optoelectronic devices.Herein,we report the preparation of borophene-ZnO heterostructures and their applications of broadband photonic nonvolatile memory.The memory shows a good switching ratio(5×10^(3))and long-term stability(3,600 s),which are superior to those of the pristine borophene or ZnO quantum dots(QDs).It is found that the memory shows a broad light response from ultraviolet(365 nm)to near infrared(850 nm).Besides,the SET voltage will decrease when the device is exposed to light,which can be attributed to the separation of holes and electrons in accelerating the formation of vacancy conductive filament.This work not only provides a promising material for next-generation photoelectric information,but also paves the way for borophene-based memory towards data storage devices.