期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
FLOWERING LOCUS T(FT)in Photosensitive Type Chrysanthemum Accelerates Flowering in Arabidopsis
1
作者 Fenglan Wang Zhenyuan Cai +5 位作者 Zhimei Li Shilong Zhang Honghui Luo Qing Wu Hanhan Xia Yanhong Guo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期819-830,共12页
FLOWERING LOCUS T(FT)is an important factor for integrating flowering signals through the photoperiod pathway,which significantly promotes flowering.Most chrysanthemum varieties are short-day plants,sensitive to the p... FLOWERING LOCUS T(FT)is an important factor for integrating flowering signals through the photoperiod pathway,which significantly promotes flowering.Most chrysanthemum varieties are short-day plants,sensitive to the photoperiod,which limits their ornamental and annual production supply.In this study,we aim to analyze the nutrients and flowering-related genes of chrysanthemums with different photoperiod types and to clone and verify the function of the flowering-related gene CmFT.We found that the formation of floral buds requires the accumulation of starch while consuming soluble sugars and the expression patterns of flowering-related genes GIGANTEA(GI),CONSTANS(CO),and FT in C.morifolium‘Zilian’and C.morifolium‘Zihongtuogui’had a certain synchronization during floral buds differentiation according to our quantitative validation,and the expression levels of CmGI,CmCO and CmFT in C.morifolium‘Zihongtuogui’were higher than those in C.morifolium.‘Zilian’in the later stage of differentiation.CmFT was cloned from photosensitive chrysanthemums-C.morifolium‘Zihongtuogui’and polypeptide alignment and phylogenetic analysis showed that CmFT was clustered in FT-like subfamily.In further functional verification,we obtained two Arabidopsis transgenic lines.Our results showed that CmFT transgenic ft mutant lines can significantly accelerate flowering in Arabidopsis.Thus,we can initially confirm that CmFT plays an important role in promoting flowering,which may be the key reason for the photosensitivity of C.morifolium‘Zihongtuogui’.Overall,the results of this study are of great importance in revealing the flowering mechanism of different photoperiod types of chrysanthemums. 展开更多
关键词 Chrysanthemum morifolium flowering-related genes CmFT photoperiod pathway heterologous expression
下载PDF
LHD3 Encoding a J-Domain Protein Controls Heading Date in Rice
2
作者 LIU Qiao QIU Linlin +4 位作者 HUA Yangguang LI Jing PANG Bo ZHAI Yufeng WANG Dekai 《Rice science》 SCIE CSCD 2023年第5期437-448,共12页
Heading date is one of the most important agronomic traits of rice,which critically affects rice ecogeographical adaptation,yield and quality.In this study,a late heading date 3(lhd3)mutant was screened from the^(60)... Heading date is one of the most important agronomic traits of rice,which critically affects rice ecogeographical adaptation,yield and quality.In this study,a late heading date 3(lhd3)mutant was screened from the^(60)Co-γirradiation mutant library.The lhd3 delayed heading date in rice under both short day and long day conditions.Map-based cloning combined with Mutmap strategy was adopted to isolate the causal LHD3 gene.The LHD3 gene encodes a DNA_J domain protein,which was ubiquitously expressed in various plant organs,and dominant expressed in stems and leaves.Subcellular localization analysis showed that LHD3 was localized to nucleus,indicating that LHD3 may interact with other elements to regulate the expression of flowering genes.The transcriptions of the heading activators Ehd1,Hd3a and RFT1 significantly decreased in the lhd3 mutant,suggesting that LHD3 may control the heading date through the Ehd1-Hd3a/RFT1 photoperiodic flowering pathway.The variation and haplotype analyses of the genomic region of LHD3 showed that there were 7 haplotypes in the LHD3 region from 4702 accessions.The haplotypes of LHD3 can be divided into two classes:class a and class b,and the heading dates of these two classes were significantly different.Further study showed that two single nucleotide polymorphisms(SNPs),SNP10(G2100C)in Hap II and SNP3(C861T)in Hap VII,may be the functional sites causing early and late heading in accessions.Nucleotide diversity analysis showed LHD3 had been selected in the indica population,rather than in the japonica population.Therefore,the present study sheds light on the regulation of LHD3 on heading date in rice and suggests that LHD3 is a novel promising new target for rice molecular design and breeding improvement. 展开更多
关键词 RICE LHD3 heading stage J-domain protein photoperiod flowering pathway
下载PDF
OsELF3 Is Involved in Circadian Clock Regulation for Promoting Flowering under Long-Day Conditions in Rice 被引量:25
3
作者 Ying Yang Qiang Peng Guo-Xing Chen Xiang-Hua Li Chang-Yin Wu 《Molecular Plant》 SCIE CAS CSCD 2013年第1期202-215,共14页
Heading date is a critical trait that determines cropping seasons and regional adaptability in rice (Oryza sativa). Research efforts during the last decade have identified some important photoperiod pathway genes th... Heading date is a critical trait that determines cropping seasons and regional adaptability in rice (Oryza sativa). Research efforts during the last decade have identified some important photoperiod pathway genes that are conserved between Arabidopsis and rice. In this study, we identified a novel gene, Oryza sativa ELF3 (OsELF3), which is a putative homolog of the ELF3 gene in Arabidopsis thaliana. OsELF3 was required for the control of heading date under long-day conditions. Its Tos17-tagging mutants exhibited a delayed heading date phenotype only under long-day, but not short-day, conditions. OsELF3 was highly expressed in leaf blades, and the OsELF3 protein was localized in the nucleolus. An obvious diurnal rhythm of OsELF3 transcript level was observed, with a trough in the early day and a peak in the late night in wild-type plants. However, this expression pattern was disrupted in oself3 mutants. Further inves- tigations showed that the expression of OsGI and Ghd7 was up-regulated in the oself3 mutant, indicating that OsELF3 acts as a negative regulator upstream of OsGI and Ghd7 in the flowering-time control under long-day conditions. The rhythmic expression of circadian clock-related genes, including some OsPRR members, was obviously affected in oself3 mutants. Our results indicated that OsELF3 acts as a floral activator in the long-day photoperiodic pathway via its cross- talk with the circadian clock in rice. 展开更多
关键词 heading date photoperiod pathway circadian clock rice.
原文传递
Molecular Cloning and Expression Analysis of Cryptochrome Gene Ps CRY2in Tree Peony 被引量:2
4
作者 REN Xiuxia WANG Shunli +3 位作者 XUE Jingqi ZHU Fuyong LIU Chuanjiao ZHANG Xiuxin 《Horticultural Plant Journal》 SCIE 2016年第6期357-362,共6页
Cryptochromes are blue/ultraviolet-A(UV-A) light receptors involved in regulating various aspects of plant growth and development.Investigations of the structure and functions of cryptochromes in plants have largely f... Cryptochromes are blue/ultraviolet-A(UV-A) light receptors involved in regulating various aspects of plant growth and development.Investigations of the structure and functions of cryptochromes in plants have largely focused on herbaceous plants. However, few data on the function of CRY2 are available in woody plants. In this study, a cryptochrome 2(CRY2) gene was isolated from Paeonia suffruticosa by Reverse Transcription Polymerase Chain Reaction(RT-PCR). Sequence alignment and motif analysis showed that the deduced amino acids contained a PHR domain near the amino terminus and a CCT domain near the carboxy terminus. Ps CRY2 showed high identity with At CRY2 of Arabidopsis.Phylogenetic analysis indicated that it was closely related to Citrus sinensis. Gene expression analysis revealed that the highest expression levels of Ps CRY2 occurred in the bud and seed embryo of P. suffruticosa, followed by the roots, stems, and leaves. Ps CRY2 was upregulated during the entire process of bud differentiation, whereas this was downregulated during the early stage of bud development and upregulated in the middle and late stages. The highest level of Ps CRY2 expression was observed in the big bell-like flower buds. These results suggested that Ps CRY2 plays an important role in both bud differentiation and bud development. The expression patterns of Ps CRY2 in the buds of ‘Luoyanghong' and ‘Qiufa1' were similar, whereas that in the buds of ‘Qiufa 1' was significantly higher than in the buds of ‘Luoyanghong'. The buds of plants subjected to different photoperiod treatments exhibited variations in Ps CRY2 expression patterns. The expression of Ps CRY2 decreased during bud sprouting and in the small bell-like flower buds that were subjected to short-day photoperiod compared to that observed under long-day photoperiod. 展开更多
关键词 tree peony photoperiod pathway CRYPTOCHROMES Ps CRY2 q RT-PCR
原文传递
Flowering responses to light and temperature 被引量:6
5
作者 Li Li Xu Li +1 位作者 Yawen Liu Hongtao Liu 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第4期403-408,共6页
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integr... Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature. 展开更多
关键词 flowering light signaling temperature photoperiod vernalization thermosensory pathway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部