The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit...Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photo...Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.展开更多
Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
AIM:To observe the retinal and choroidal circulations in patients with non-arteritic permanent central retinal artery occlusion(NA-CRAO)via optical coherence tomography angiography(OCTA)and analyze their correlation w...AIM:To observe the retinal and choroidal circulations in patients with non-arteritic permanent central retinal artery occlusion(NA-CRAO)via optical coherence tomography angiography(OCTA)and analyze their correlation with visual acuity.METHODS:Sixty-two eyes with clinically confirmed acute NA-CRAO were included in the study and divided into:A type(mild n=29),B type(moderate n=27)and C type(severe n=6)based on the degree of visual loss,retinal edema,and arterial blood flow delay in fundus fluorescence angiography(FFA).Contralateral healthy eyes were used as the control group.Best-corrected visual acuity(BCVA),slit lamp microscopy,indirect ophthalmoscopy,fundus color photography,OCTA,and FFA were performed.Spearman’s correlation analysis was used to determine the correlations between retinal and choroidal vessels and visual acuity.RESULTS:There were no statistically significant differences in age,gender,and intraocular pressure among the three types and the control group(P>0.05).Vessel density in deep capillary plexus(VD-DCP)significantly decreased(P<0.05)in all three types of NA-CRAO patients compared to the control group.Vessel density in superficial vascular plexus(VD-SVP)significantly decreased(P<0.05)in type A patients and choriocapillaris flow area significantly decreased(P<0.05)in type B and type C patients compared to the control group;while outer retinal flow areas significantly increased in the type A(P<0.05)and decreased in type C patients(P<0.05).The retinal thickness significantly increased in type C group(P<0.05).The VD-SVP at fovea in the type A was significantly lower than both of type B and C.The VD-SVP at nasal parafovea in type A and B was significantly lower than type C(P<0.05).The logMAR BCVA of type A was significantly better than that of type B and C groups(P<0.05).Spearman’s correlation analysis showed that the logMAR BCVA was positively correlated with VD-SVP at fovea(r=0.679,P=0.031)and nasal parafovea(r=0.826,P=0.013).CONCLUSION:OCTA is valuable for assessing retinal ischemia,and evaluating visual impairment.Deep retinal vasculature is commonly affected in all NA-CRAO types.VDSVPs at fovea and nasal parafovea can serve as reliable markers of visual impairment in NA-CRAO.展开更多
Purpose: To evaluate optical coherence tomography angiography (OCT-A) data obtained from the superficial retinal capillary plexus of patients with retinal vein occlusion and comparative analysis with data registered f...Purpose: To evaluate optical coherence tomography angiography (OCT-A) data obtained from the superficial retinal capillary plexus of patients with retinal vein occlusion and comparative analysis with data registered from unaffected fellow eyes. Methods: The examined patients were classified into 2 groups: group 1—eyes with established retinal vein occlusion (n = 29) and group 2—unaffected fellow eyes of patients with retinal vein occlusion (n = 24). The scanning protocol “Angiography 3 × 3 mm” of Zeiss Cirrus HD-OCT 6000, AngioPlex Metrix was used to evaluate the retinal superficial capillary plexus. The analyzed parameters were vascular density and perfusion density, as well as the area, perimeter, and circularity of the foveolar avascular zone (FAZ). Results: The comparative analysis of FAZ parameters at the superficial capillary plexus (SCP) between group 1 (eyes with retinal vein occlusion) and group 2 (unaffected fellow eyes) showed significant results for the three parameters, respectively area (p = 0.003), perimeter (p ≤ 0.001), and circularity (p = 0.011) of FAZ. The comparative analysis of the vascular network at SCP in patients with diagnosed retinal vein occlusion and unaffected fellow eyes showed significant results for vascular density (VD) in the central (p = 0.038) and inner (p ≤ 0.001) zones as well as total VD (p ≤ 0.001) were statistically significant. Moreover, the results obtained in the study of vascular perfusion (VP) indicated significant results in the inner zone (p ≤ 0.001) and total VP (p = 0.001). Vascular perfusion in the central zone (p = 0.116) was the only parameter not to meet significant results. Conclusion: The current study observed a significant enlargement of the FAZ and loss of its circularity, along with a reduction in vascular network parameters at the superficial retinal capillary plexus level.展开更多
●AIM:To evaluate the effectiveness and safety of scleral buckling for the treatment of rhegmatogenous retinal detachment(RRD)using a novel foldable capsular buckle(FCB).●METHODS:This was a series of case observation...●AIM:To evaluate the effectiveness and safety of scleral buckling for the treatment of rhegmatogenous retinal detachment(RRD)using a novel foldable capsular buckle(FCB).●METHODS:This was a series of case observation studies.Eighteen patients(18 eyes)who visited our ophthalmology department between August 2020 and August 2022 and were treated for RRD with scleral buckling using FCB were included.The procedure was similar to conventional scleral buckling,while a balloon-like FCB was placed onto the retinal break with balanced salt solution filling for a broad,external indentation instead of the silicone buckle.The retinal reattachment rate,best corrected visual acuity(BCVA),intraocular pressure(IOP),refractive dioptre and astigmatism degree,and complications were evaluated and recorded.●RESULTS:There were 7 males and 11 females aged 19-58y.The average time course of RRD was 12d,ranging from 7-20d.The retinal break was located in the superior quadrants in 8 eyes and in the inferior quadrants in 10 eyes,with macula-off detachments in 12 eyes.The patients were followed-up for at least 6mo.The final retinal reattachment rate was 100%.The BCVA was significantly improved compared with the baseline(P<0.05).There was no significant change in refractive dioptre or astigmatism degree at each follow-up(all P>0.05).Three patients had transiently high IOPs within one week after surgery.Mild diplopia occurred in 5 patients after surgery and then disappeared after the balloon fluid was removed.●CONCLUSION:The success rate of FCB scleral buckling for RRD is satisfactory.This procedure can be expected to be applied in new,uncomplicated cases of RRD.展开更多
AIM:To investigate the clinical characteristics,treatment methods and outcomes of rhegmatogenous retinal detachment(RRD)in highly myopic eyes with implantable collamer lens(ICL).METHODS:High myopia patients who receiv...AIM:To investigate the clinical characteristics,treatment methods and outcomes of rhegmatogenous retinal detachment(RRD)in highly myopic eyes with implantable collamer lens(ICL).METHODS:High myopia patients who received treatment for nontraumatic RRD after ICL implantation surgery at the Retinal Department of Zhongshan Ophthalmic Center from Jan 2018 to Dec 2022 were reviewed.Comprehensive ophthalmologic examinations including visual acuity measurement and digital fundus photography were performed in each patient.RESULTS:A total of nine RRD eyes from nine patients who received V4c-ICL implantation were included.The mean time from ICL implantation surgery to the diagnosis of RRD was 32.44±22.56mo(range,1-60mo).At the initial visit for RRD,giant retinal tear(GRT),horseshoe tear,simple round hole,and horseshoe tear combined with round hole were detected in 3,3,2,and 1 eye(s),respectively,with maculaoff in eyes.Eight patients received surgical treatment,and one patient was treated by retinal laser photocoagulation alone.The ICL was preserved in 7 eyes.At the last followup,the mean best corrected visual acuity(BCVA)improved significantly from 1.76±1.06 logMAR at presentation to 0.81±1.01 logMAR(P=0.035),and no case of recurrent retinal detachment was found.CONCLUSION:The morphological presentation of retinal breaks is diverse in this study.The ICL can be preserved in most cases during the course of retinal detachment repair surgery in our data,companied with acceptable visual and anatomical outcomes.展开更多
AIM:To investigate the effects of vialinin A on viability of human retinal endothelial cells(HRECs)under high glucose condition and its potential mechanism.METHODS:The HRECs were divided into four groups:normal glucos...AIM:To investigate the effects of vialinin A on viability of human retinal endothelial cells(HRECs)under high glucose condition and its potential mechanism.METHODS:The HRECs were divided into four groups:normal glucose control group(NG,5 mmol/L D-glucose),high glucose group(HG,30 mmol/L D-glucose),HG+1μmol/L vialinin A group,and HG+5μmol/L vialinin A group.The cell viabilities were measured with cell counting kit-8(CCK-8)assay for proliferation,with scratch assay for migration,and tube formation,for evaluation of the impact of vialinin A on cellular behaviour.Real-time PCR and Western blotting were used to determine the expression level of vascular endothelial growth factor(VEGF).RESULTS:The proliferative capacity and migration of HRECs was reduced by 5μmol/L vialinin A in high glucose environment(both P<0.05).Vialinin A also inhibited highglucose-induced tube formation of HRECs.The expression level of VEGF and PI3K in HRECs was also significantly decreased by vialinin A(P<0.05).CONCLUSION:Vialinin A inhibits the cell viability of HRECs.It may serve as a potential target for anti-angiogenic therapy.展开更多
AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.MET...AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.展开更多
AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in r...AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response.METHODS:Sprague-Dawley rats were exposed to intense light to induce retinal injury.Neutralizing antibody against PDGFRβwere deployed to block the signaling pathway in retinal pericytes through intravitreal injection.Retinal histology and Müller glial reaction were assessed following light injury.In vitro,normal and PDGFRβ-blocked retinal pericytes were cocultured with Müller cell line(rMC-1)to examine morphological and protein expression changes upon supplementation with light-injured supernatants of homogenized retinas(SHRs).RESULTS:PDGFRβblockage 24h prior to intense light exposure resulted in a significant exacerbation of photoreceptor loss.The upregulation of GFAP and p-STAT3,observed after intense light exposure,was significantly inhibited in the PDGFRβblockage group.Fur ther upregulation of cytokines monocyte chemoattractant protein 1(MCP-1)and interleukin-1β(IL-1β)was also observed following PDGFRβinhibition.In the in vitro coculture system,the addition of light-injured SHRs induced pericyte deformation and upregulation of proliferating cell nuclear antigen(PCNA)expression,while Müller cells exhibited neuron-like morphology and expressed Nestin.However,PDGFRβblockage in retinal pericytes abolished these cellular responses to light-induced damage,consistent with the in vivo PDGFRβblockage findings.CONCLUSION:Pericyte-Müller glia interaction plays a potential role in the endogenous repair process of retinal injury.Impairment of this interaction exacerbates photoreceptor degeneration in light-induced retinal injury.展开更多
AIM:To investigate the difference in risk factors between non-arteritic anterior ischaemic optic neuropathy(NAION)and central retinal artery occlusion(CRAO)and develop a predictive diagnostic nomogram.METHODS:The stud...AIM:To investigate the difference in risk factors between non-arteritic anterior ischaemic optic neuropathy(NAION)and central retinal artery occlusion(CRAO)and develop a predictive diagnostic nomogram.METHODS:The study included 37 patients with monocular NAION,20 with monocular CRAO,and 24 with hypertension.Gender,age,and systemic diseases were recorded.Blood routine,lipids,hemorheology,carotid and brachial artery doppler ultrasound,and echocardiography were collected.The optic disc area,cup area,and cup-to-disc ratio(C/D)of the unaffected eye in the NAION and CRAO group and the right eye in the hypertension group were measured.RESULTS:The carotid artery intimal medial thickness(C-IMT)of the affected side of the CRAO group was thicker(P=0.039)and its flow-mediated dilation(FMD)was lower(P=0.049)than the NAION group.Compared with hypertension patients,NAION patients had higher whole blood reduced viscosity low-shear(WBRV-L)and erythrocyte aggregation index(EAI;P=0.045,0.037),and CRAO patients had higher index of rigidity of erythrocyte(IR)and erythrocyte deformation index(EDI;P=0.004,0.001).The optic cup and the C/D of the NAION group were smaller than the other two groups(P<0.0001).The diagnostic prediction model showed high diagnostic specificity(83.7%)and sensitivity(85.6%),which was highly related to hypertension,the C-IMT of the affected side,FMD,platelet(PLT),EAI,and C/D.CONCLUSION:CRAO patients show thicker C-IMT and worse endothelial function than NAION.NAION and CRAO may be related to abnormal hemorheology.A small cup and small C/D may be involved in NAION.The diagnostic nomogram can be used to preliminarily identify NAION and CRAO.展开更多
AIM:To quantify changes in radial peripapillary capillary vessel density(ppVD)and the peripapillary retinal nerve fiber layer(pRNFL)in children with type 1 diabetes without clinical diabetic retinopathy by optical coh...AIM:To quantify changes in radial peripapillary capillary vessel density(ppVD)and the peripapillary retinal nerve fiber layer(pRNFL)in children with type 1 diabetes without clinical diabetic retinopathy by optical coherence tomography angiography(OCTA),providing a basis for early retinopathy in children with type 1 diabetes.METHODS:This was a retrospective study.A total of 30 patients(3–14y)with type 1 diabetes without clinical diabetic retinopathy(NDR group)were included.A total of 30 age-matched healthy subjects were included as the normal control group(CON group).The HbA1c level in the last 3mo was measured once in the NDR group.The pRNFL thickness and ppVD were automatically measured,and the mean pRNFL and ppVD were calculated in the nasal,inferior,temporal,and superior quadrants.The changes in ppVD and pRNFL in the two groups were analyzed.RESULTS:Compared with CON group,the nasal and superior ppVDs decreased in the NDR group(all P<0.01).The thickness of the nasal pRNFL decreased significantly(P<0.01),while the inferior,temporal and superior pRNFLs slightly decreased but not significant in the NDR group(all P>0.05).Person and Spearman correlation analysis of ppVD and pRNFL thickness in each quadrant of the NDR group showed a positive correlation between nasal and superior(all P<0.01),while inferior and temporal had no significant correlation(all P>0.05).There was no significant correlation between the HbA1c level and ppVD and pRNFL in any quadrant(all P>0.05).There was no significant correlation between the course of diabetes mellitus and ppVD and pRNFL in any quadrant(all P>0.05).CONCLUSION:ppVD and pRNFL decrease in eyes of children with type 1 diabetes before clinically detectable retinopathy and OCTA is helpful for early monitoring.展开更多
AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithe...AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.展开更多
BACKGROUND Both rhabdomyosarcoma(RMS)and central retinal artery occlusion(CRAO)are rare medical diseases,and their simultaneous occurrence in the same patient is extraordinarily uncommon.This study presents a comprehe...BACKGROUND Both rhabdomyosarcoma(RMS)and central retinal artery occlusion(CRAO)are rare medical diseases,and their simultaneous occurrence in the same patient is extraordinarily uncommon.This study presents a comprehensive overview of the clinical manifestations,diagnostic imaging results,and therapeutic interventions of a patient with both conditions.CASE SUMMARY In this report,we present a 30-year-old male who presented with significant protrusion,pain and vision loss and was diagnosed with RMS in the orbit and sinus with CRAO.Following resection of the sinus and orbital mass and enucleation of the right eye,the patient experienced symptom improvement.CONCLUSION This article provides an in-depth analysis of the patient’s clinical manifestations,the tumor’s anatomical origin,and the etiology of CRAO.The concurrent manifestation of both RMS and CRAO is exceedingly uncommon in clinical practice.展开更多
AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypo...AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypoxic model.METHODS:In the first set of experiments,the optimal CoCl_(2) dose was determined by exposing ARPE-19 cell cultures to different concentrations.To evaluate the effect of ALCAR on cell viability,five groups of ARPE-19 cell culture were established that included a control group,a sham group(200μM CoCl_(2)),and groups that received 1,10 and 100 mM doses of ALCAR combined with 200μM CoCl_(2),respectively.The cell viability was measured by MTT assay.The morphological characteristics of cells were observed by an inverted phase contrast microscope.The levels of VEGF and HIF-1α secretion by ARPE-19 cells were detected by enzyme linked immunosorbent assay(ELISA)assay.RESULTS:ARPE-19 cells were exposed to different doses of CoCl_(2) in order to create a hypoxia model.Nevertheless,when exposed to a concentration of 200μM CoCl_(2),a notable decrease in viability to 83% was noted.ALCAR was found to increase the cell viability at 1 mM and 10 mM concentrations,while the highest concentration(100 mM)did not have an added effect.The cell viability was found to be significantly higher in the groups treated with a concentration of 1 mM and 10 mM ALCAR compared to the Sham group(P=0.041,P=0.019,respectively).The cell viability and morphology remained unaffected by the greatest dose of ALCAR(100 mM).The administration of 10 mM ALCAR demonstrated a statistically significant reduction in the levels of VEGF and HIF-1α compared with the Sham group(P=0.013,P=0.033,respectively).CONCLUSION:The findings from the current study indicate that ALCAR could represent a viable therapeutic option with the potential to open up novel treatment pathways for retinal diseases,particular relevance for age-related macular degeneration(AMD).However,to fully elucidate ALCAR’s application potential in retinal diseases,additional investigation is necessary to clearly define the exact mechanisms involved.展开更多
Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc...Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金supported by the National Natural Science Foundation of China,No.82271114the Natural Science Foundation of Zhejiang Province of China,No.LZ22H120001(both to ZLC).
文摘Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金supported by Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology,No.20200730009 (to YX)the National Natural Science Foundation of China,No.82074169 (to XM)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,No.2021A1515012473 (to XM)Project of Administration of Traditional Chinese Medicine of Guangdong Province,No.20202045 (to XM)Aier Eye Hospital Group,No.AF2019001 (to ST,KFS,YX,XM)。
文摘Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-016A).
文摘AIM:To observe the retinal and choroidal circulations in patients with non-arteritic permanent central retinal artery occlusion(NA-CRAO)via optical coherence tomography angiography(OCTA)and analyze their correlation with visual acuity.METHODS:Sixty-two eyes with clinically confirmed acute NA-CRAO were included in the study and divided into:A type(mild n=29),B type(moderate n=27)and C type(severe n=6)based on the degree of visual loss,retinal edema,and arterial blood flow delay in fundus fluorescence angiography(FFA).Contralateral healthy eyes were used as the control group.Best-corrected visual acuity(BCVA),slit lamp microscopy,indirect ophthalmoscopy,fundus color photography,OCTA,and FFA were performed.Spearman’s correlation analysis was used to determine the correlations between retinal and choroidal vessels and visual acuity.RESULTS:There were no statistically significant differences in age,gender,and intraocular pressure among the three types and the control group(P>0.05).Vessel density in deep capillary plexus(VD-DCP)significantly decreased(P<0.05)in all three types of NA-CRAO patients compared to the control group.Vessel density in superficial vascular plexus(VD-SVP)significantly decreased(P<0.05)in type A patients and choriocapillaris flow area significantly decreased(P<0.05)in type B and type C patients compared to the control group;while outer retinal flow areas significantly increased in the type A(P<0.05)and decreased in type C patients(P<0.05).The retinal thickness significantly increased in type C group(P<0.05).The VD-SVP at fovea in the type A was significantly lower than both of type B and C.The VD-SVP at nasal parafovea in type A and B was significantly lower than type C(P<0.05).The logMAR BCVA of type A was significantly better than that of type B and C groups(P<0.05).Spearman’s correlation analysis showed that the logMAR BCVA was positively correlated with VD-SVP at fovea(r=0.679,P=0.031)and nasal parafovea(r=0.826,P=0.013).CONCLUSION:OCTA is valuable for assessing retinal ischemia,and evaluating visual impairment.Deep retinal vasculature is commonly affected in all NA-CRAO types.VDSVPs at fovea and nasal parafovea can serve as reliable markers of visual impairment in NA-CRAO.
文摘Purpose: To evaluate optical coherence tomography angiography (OCT-A) data obtained from the superficial retinal capillary plexus of patients with retinal vein occlusion and comparative analysis with data registered from unaffected fellow eyes. Methods: The examined patients were classified into 2 groups: group 1—eyes with established retinal vein occlusion (n = 29) and group 2—unaffected fellow eyes of patients with retinal vein occlusion (n = 24). The scanning protocol “Angiography 3 × 3 mm” of Zeiss Cirrus HD-OCT 6000, AngioPlex Metrix was used to evaluate the retinal superficial capillary plexus. The analyzed parameters were vascular density and perfusion density, as well as the area, perimeter, and circularity of the foveolar avascular zone (FAZ). Results: The comparative analysis of FAZ parameters at the superficial capillary plexus (SCP) between group 1 (eyes with retinal vein occlusion) and group 2 (unaffected fellow eyes) showed significant results for the three parameters, respectively area (p = 0.003), perimeter (p ≤ 0.001), and circularity (p = 0.011) of FAZ. The comparative analysis of the vascular network at SCP in patients with diagnosed retinal vein occlusion and unaffected fellow eyes showed significant results for vascular density (VD) in the central (p = 0.038) and inner (p ≤ 0.001) zones as well as total VD (p ≤ 0.001) were statistically significant. Moreover, the results obtained in the study of vascular perfusion (VP) indicated significant results in the inner zone (p ≤ 0.001) and total VP (p = 0.001). Vascular perfusion in the central zone (p = 0.116) was the only parameter not to meet significant results. Conclusion: The current study observed a significant enlargement of the FAZ and loss of its circularity, along with a reduction in vascular network parameters at the superficial retinal capillary plexus level.
基金Supported by Xuzhou Health Outstanding Talents Project(No.XWJC001)Critical Special Project for Social Development of Xuzhou(No.KC21153)+1 种基金Science and Technology Innovation Project of Xuzhou Municipal Health Commission(No.XWKYHT20230039)Applied Basic Research Project of Xuzhou(No.KC23016).
文摘●AIM:To evaluate the effectiveness and safety of scleral buckling for the treatment of rhegmatogenous retinal detachment(RRD)using a novel foldable capsular buckle(FCB).●METHODS:This was a series of case observation studies.Eighteen patients(18 eyes)who visited our ophthalmology department between August 2020 and August 2022 and were treated for RRD with scleral buckling using FCB were included.The procedure was similar to conventional scleral buckling,while a balloon-like FCB was placed onto the retinal break with balanced salt solution filling for a broad,external indentation instead of the silicone buckle.The retinal reattachment rate,best corrected visual acuity(BCVA),intraocular pressure(IOP),refractive dioptre and astigmatism degree,and complications were evaluated and recorded.●RESULTS:There were 7 males and 11 females aged 19-58y.The average time course of RRD was 12d,ranging from 7-20d.The retinal break was located in the superior quadrants in 8 eyes and in the inferior quadrants in 10 eyes,with macula-off detachments in 12 eyes.The patients were followed-up for at least 6mo.The final retinal reattachment rate was 100%.The BCVA was significantly improved compared with the baseline(P<0.05).There was no significant change in refractive dioptre or astigmatism degree at each follow-up(all P>0.05).Three patients had transiently high IOPs within one week after surgery.Mild diplopia occurred in 5 patients after surgery and then disappeared after the balloon fluid was removed.●CONCLUSION:The success rate of FCB scleral buckling for RRD is satisfactory.This procedure can be expected to be applied in new,uncomplicated cases of RRD.
基金Supported by the Fundamental Research Funds of the State Key Laboratory of Ophthalmology(No.303060202400201203).
文摘AIM:To investigate the clinical characteristics,treatment methods and outcomes of rhegmatogenous retinal detachment(RRD)in highly myopic eyes with implantable collamer lens(ICL).METHODS:High myopia patients who received treatment for nontraumatic RRD after ICL implantation surgery at the Retinal Department of Zhongshan Ophthalmic Center from Jan 2018 to Dec 2022 were reviewed.Comprehensive ophthalmologic examinations including visual acuity measurement and digital fundus photography were performed in each patient.RESULTS:A total of nine RRD eyes from nine patients who received V4c-ICL implantation were included.The mean time from ICL implantation surgery to the diagnosis of RRD was 32.44±22.56mo(range,1-60mo).At the initial visit for RRD,giant retinal tear(GRT),horseshoe tear,simple round hole,and horseshoe tear combined with round hole were detected in 3,3,2,and 1 eye(s),respectively,with maculaoff in eyes.Eight patients received surgical treatment,and one patient was treated by retinal laser photocoagulation alone.The ICL was preserved in 7 eyes.At the last followup,the mean best corrected visual acuity(BCVA)improved significantly from 1.76±1.06 logMAR at presentation to 0.81±1.01 logMAR(P=0.035),and no case of recurrent retinal detachment was found.CONCLUSION:The morphological presentation of retinal breaks is diverse in this study.The ICL can be preserved in most cases during the course of retinal detachment repair surgery in our data,companied with acceptable visual and anatomical outcomes.
基金Supported by the National Natural Science Foundation of China(No.81970830)Jiangsu Provincial Medical Innovation Team(No.CXTDA2017039).
文摘AIM:To investigate the effects of vialinin A on viability of human retinal endothelial cells(HRECs)under high glucose condition and its potential mechanism.METHODS:The HRECs were divided into four groups:normal glucose control group(NG,5 mmol/L D-glucose),high glucose group(HG,30 mmol/L D-glucose),HG+1μmol/L vialinin A group,and HG+5μmol/L vialinin A group.The cell viabilities were measured with cell counting kit-8(CCK-8)assay for proliferation,with scratch assay for migration,and tube formation,for evaluation of the impact of vialinin A on cellular behaviour.Real-time PCR and Western blotting were used to determine the expression level of vascular endothelial growth factor(VEGF).RESULTS:The proliferative capacity and migration of HRECs was reduced by 5μmol/L vialinin A in high glucose environment(both P<0.05).Vialinin A also inhibited highglucose-induced tube formation of HRECs.The expression level of VEGF and PI3K in HRECs was also significantly decreased by vialinin A(P<0.05).CONCLUSION:Vialinin A inhibits the cell viability of HRECs.It may serve as a potential target for anti-angiogenic therapy.
基金Supported by Shenzhen Science and Technology Program,Shenzhen,China(No.JCYJ20200109145001814,No.SGDX20211123120001001)the National Natural Science Foundation of China(No.81970790)Sanming Project of Medicine in Shenzhen(No.SZSM202011015).
文摘AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.
基金Supported by National Natural Science Foundation of China(No.81900862)。
文摘AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response.METHODS:Sprague-Dawley rats were exposed to intense light to induce retinal injury.Neutralizing antibody against PDGFRβwere deployed to block the signaling pathway in retinal pericytes through intravitreal injection.Retinal histology and Müller glial reaction were assessed following light injury.In vitro,normal and PDGFRβ-blocked retinal pericytes were cocultured with Müller cell line(rMC-1)to examine morphological and protein expression changes upon supplementation with light-injured supernatants of homogenized retinas(SHRs).RESULTS:PDGFRβblockage 24h prior to intense light exposure resulted in a significant exacerbation of photoreceptor loss.The upregulation of GFAP and p-STAT3,observed after intense light exposure,was significantly inhibited in the PDGFRβblockage group.Fur ther upregulation of cytokines monocyte chemoattractant protein 1(MCP-1)and interleukin-1β(IL-1β)was also observed following PDGFRβinhibition.In the in vitro coculture system,the addition of light-injured SHRs induced pericyte deformation and upregulation of proliferating cell nuclear antigen(PCNA)expression,while Müller cells exhibited neuron-like morphology and expressed Nestin.However,PDGFRβblockage in retinal pericytes abolished these cellular responses to light-induced damage,consistent with the in vivo PDGFRβblockage findings.CONCLUSION:Pericyte-Müller glia interaction plays a potential role in the endogenous repair process of retinal injury.Impairment of this interaction exacerbates photoreceptor degeneration in light-induced retinal injury.
基金the National Natural Science Foundation of China(No.82201200).
文摘AIM:To investigate the difference in risk factors between non-arteritic anterior ischaemic optic neuropathy(NAION)and central retinal artery occlusion(CRAO)and develop a predictive diagnostic nomogram.METHODS:The study included 37 patients with monocular NAION,20 with monocular CRAO,and 24 with hypertension.Gender,age,and systemic diseases were recorded.Blood routine,lipids,hemorheology,carotid and brachial artery doppler ultrasound,and echocardiography were collected.The optic disc area,cup area,and cup-to-disc ratio(C/D)of the unaffected eye in the NAION and CRAO group and the right eye in the hypertension group were measured.RESULTS:The carotid artery intimal medial thickness(C-IMT)of the affected side of the CRAO group was thicker(P=0.039)and its flow-mediated dilation(FMD)was lower(P=0.049)than the NAION group.Compared with hypertension patients,NAION patients had higher whole blood reduced viscosity low-shear(WBRV-L)and erythrocyte aggregation index(EAI;P=0.045,0.037),and CRAO patients had higher index of rigidity of erythrocyte(IR)and erythrocyte deformation index(EDI;P=0.004,0.001).The optic cup and the C/D of the NAION group were smaller than the other two groups(P<0.0001).The diagnostic prediction model showed high diagnostic specificity(83.7%)and sensitivity(85.6%),which was highly related to hypertension,the C-IMT of the affected side,FMD,platelet(PLT),EAI,and C/D.CONCLUSION:CRAO patients show thicker C-IMT and worse endothelial function than NAION.NAION and CRAO may be related to abnormal hemorheology.A small cup and small C/D may be involved in NAION.The diagnostic nomogram can be used to preliminarily identify NAION and CRAO.
基金Supported by Xi’an Municipal Health Commission Scientific Research Project(No.2023yb22)Hospital Level Project of Xi’an Children’s Hospital(No.2021H12No.2022F08).
文摘AIM:To quantify changes in radial peripapillary capillary vessel density(ppVD)and the peripapillary retinal nerve fiber layer(pRNFL)in children with type 1 diabetes without clinical diabetic retinopathy by optical coherence tomography angiography(OCTA),providing a basis for early retinopathy in children with type 1 diabetes.METHODS:This was a retrospective study.A total of 30 patients(3–14y)with type 1 diabetes without clinical diabetic retinopathy(NDR group)were included.A total of 30 age-matched healthy subjects were included as the normal control group(CON group).The HbA1c level in the last 3mo was measured once in the NDR group.The pRNFL thickness and ppVD were automatically measured,and the mean pRNFL and ppVD were calculated in the nasal,inferior,temporal,and superior quadrants.The changes in ppVD and pRNFL in the two groups were analyzed.RESULTS:Compared with CON group,the nasal and superior ppVDs decreased in the NDR group(all P<0.01).The thickness of the nasal pRNFL decreased significantly(P<0.01),while the inferior,temporal and superior pRNFLs slightly decreased but not significant in the NDR group(all P>0.05).Person and Spearman correlation analysis of ppVD and pRNFL thickness in each quadrant of the NDR group showed a positive correlation between nasal and superior(all P<0.01),while inferior and temporal had no significant correlation(all P>0.05).There was no significant correlation between the HbA1c level and ppVD and pRNFL in any quadrant(all P>0.05).There was no significant correlation between the course of diabetes mellitus and ppVD and pRNFL in any quadrant(all P>0.05).CONCLUSION:ppVD and pRNFL decrease in eyes of children with type 1 diabetes before clinically detectable retinopathy and OCTA is helpful for early monitoring.
基金Supported by the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62)Natural Science Foundation of Fujian Province(No.2020J01652).
文摘AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.
基金Supported by National Natural Science Foundation of China,No.82271094Science and Technology Projects in Guangzhou,No.202201020030,No.202201020015 and No.202201010618Medical Scientific Research Foundation of Guangdong Province of China,No.A2022415.
文摘BACKGROUND Both rhabdomyosarcoma(RMS)and central retinal artery occlusion(CRAO)are rare medical diseases,and their simultaneous occurrence in the same patient is extraordinarily uncommon.This study presents a comprehensive overview of the clinical manifestations,diagnostic imaging results,and therapeutic interventions of a patient with both conditions.CASE SUMMARY In this report,we present a 30-year-old male who presented with significant protrusion,pain and vision loss and was diagnosed with RMS in the orbit and sinus with CRAO.Following resection of the sinus and orbital mass and enucleation of the right eye,the patient experienced symptom improvement.CONCLUSION This article provides an in-depth analysis of the patient’s clinical manifestations,the tumor’s anatomical origin,and the etiology of CRAO.The concurrent manifestation of both RMS and CRAO is exceedingly uncommon in clinical practice.
文摘AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypoxic model.METHODS:In the first set of experiments,the optimal CoCl_(2) dose was determined by exposing ARPE-19 cell cultures to different concentrations.To evaluate the effect of ALCAR on cell viability,five groups of ARPE-19 cell culture were established that included a control group,a sham group(200μM CoCl_(2)),and groups that received 1,10 and 100 mM doses of ALCAR combined with 200μM CoCl_(2),respectively.The cell viability was measured by MTT assay.The morphological characteristics of cells were observed by an inverted phase contrast microscope.The levels of VEGF and HIF-1α secretion by ARPE-19 cells were detected by enzyme linked immunosorbent assay(ELISA)assay.RESULTS:ARPE-19 cells were exposed to different doses of CoCl_(2) in order to create a hypoxia model.Nevertheless,when exposed to a concentration of 200μM CoCl_(2),a notable decrease in viability to 83% was noted.ALCAR was found to increase the cell viability at 1 mM and 10 mM concentrations,while the highest concentration(100 mM)did not have an added effect.The cell viability was found to be significantly higher in the groups treated with a concentration of 1 mM and 10 mM ALCAR compared to the Sham group(P=0.041,P=0.019,respectively).The cell viability and morphology remained unaffected by the greatest dose of ALCAR(100 mM).The administration of 10 mM ALCAR demonstrated a statistically significant reduction in the levels of VEGF and HIF-1α compared with the Sham group(P=0.013,P=0.033,respectively).CONCLUSION:The findings from the current study indicate that ALCAR could represent a viable therapeutic option with the potential to open up novel treatment pathways for retinal diseases,particular relevance for age-related macular degeneration(AMD).However,to fully elucidate ALCAR’s application potential in retinal diseases,additional investigation is necessary to clearly define the exact mechanisms involved.
基金supported by Instituto de Salud CarlosⅢ(ISCⅢ):PI19/00203cofunded by ERDF+9 种基金"A way to make Europe"to MPVP and DGAP122/00900RD16/0008/0026 co-funded by ERDF"A way to make Europe"to MPVP and RD21/0002/0014financiado porla Unión Europea-NextGenerationEUFundación Robles Chillida to DGARED2018-102499-TPID201 9-106498GB-I00funded by MCIN/AEI/10.13039/501100011 033 to MVSIHU FOReSIGHT[ANR-18-IAHU-0001] to SP
文摘Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.