In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual ...Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.展开更多
Three-dimensional(3D)image reconstruction involves the computations of an extensive amount of data that leads to tremendous processing time.Therefore,optimization is crucially needed to improve the performance and eff...Three-dimensional(3D)image reconstruction involves the computations of an extensive amount of data that leads to tremendous processing time.Therefore,optimization is crucially needed to improve the performance and efficiency.With the widespread use of graphics processing units(GPU),parallel computing is transforming this arduous reconstruction process for numerous imaging modalities,and photoacoustic computed tomography(PACT)is not an exception.Existing works have investigated GPU-based optimization on photoacoustic microscopy(PAM)and PACT reconstruction using compute unified device architecture(CUDA)on either C++or MATLAB only.However,our study is the first that uses cross-platform GPU computation.It maintains the simplicity of MATLAB,while improves the speed through CUDA/C++−based MATLAB converted functions called MEXCUDA.Compared to a purely MATLAB with GPU approach,our cross-platform method improves the speed five times.Because MATLAB is widely used in PAM and PACT,this study will open up new avenues for photoacoustic image reconstruction and relevant real-time imaging applications.展开更多
Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration...Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.展开更多
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
基金Supported by National High Technology Research and Development Program("863"Program)of China(No.863-306-ZD13-03-06)
文摘Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.
基金supported in part by the Career Catalyst Research Grant from the Susan G.Komen Foundationthe Clinical and Translational Science Pilot Study Award from the National Institutes of Health.
文摘Three-dimensional(3D)image reconstruction involves the computations of an extensive amount of data that leads to tremendous processing time.Therefore,optimization is crucially needed to improve the performance and efficiency.With the widespread use of graphics processing units(GPU),parallel computing is transforming this arduous reconstruction process for numerous imaging modalities,and photoacoustic computed tomography(PACT)is not an exception.Existing works have investigated GPU-based optimization on photoacoustic microscopy(PAM)and PACT reconstruction using compute unified device architecture(CUDA)on either C++or MATLAB only.However,our study is the first that uses cross-platform GPU computation.It maintains the simplicity of MATLAB,while improves the speed through CUDA/C++−based MATLAB converted functions called MEXCUDA.Compared to a purely MATLAB with GPU approach,our cross-platform method improves the speed five times.Because MATLAB is widely used in PAM and PACT,this study will open up new avenues for photoacoustic image reconstruction and relevant real-time imaging applications.
基金supported by the Opening Foundation of the Agile and Intelligence Computing Key Laboratory of Sichuan Province under Grant No.H23004the Chengdu Municipal Science and Technology Bureau Technological Innovation R&D Project(Key Project)under Grant No.2024-YF08-00106-GX.
文摘Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.