Diospyros texana (Texas persimmon) is a secondary species in most Juniperus ashei/Quercus fusiformis woodlands in central Texas. It has high density, but plants are mostly in the community understory. Light response c...Diospyros texana (Texas persimmon) is a secondary species in most Juniperus ashei/Quercus fusiformis woodlands in central Texas. It has high density, but plants are mostly in the community understory. Light response curves at ambient and elevated levels of CO<sub>2</sub> and temperature were measured for D. texana. The A<sub>net</sub> (photosynthetic rate) increased significantly as both light level and CO<sub>2</sub> levels increased but not temperature. The A<sub>max</sub> (maximum photosynthetic rate) of D. texana in full sun at elevated levels of CO<sub>2</sub> was increased for all treatments. Stomatal conductance increased with levels of CO<sub>2</sub> but only if the interaction was removed from the model. Intercellular levels of CO<sub>2</sub> increased with both temperature and CO<sub>2</sub> treatments as did water use efficiency (WUE). Furthermore, light saturation (L<sub>sat</sub>) increased with CO<sub>2</sub> treatments and light compensation (L<sub>cp</sub>) increased with temperature. The dark respiration (R<sub>d</sub>) increased with both temperature and CO<sub>2</sub> treatments. Markov population models suggested D. texana populations would remain ecologically similar in the future. However, sub-canopy light levels and herbivory should be considered when examining population projections. For example, Juniperus ashei juveniles are not recruited into any canopy unless there are high light levels. Herbivory reduces the success of Quercus juveniles from reaching the canopy. These factors do not seem to be a problem for D. texana juveniles which would allow them to reach the canopy without need of a high light gap and are not prevented by herbivory. Thus, Juniperus/Quercus woodlands will change in the future to woodlands with D. texana a more common species.展开更多
Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cr...Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures.展开更多
The present study was carried out on natural Korean fir forests (Abies koreana) growing in Mount Halla in Jeju Island, Korea (33° 13-36' N and 126° 12-57' E). Mount Halla is the highest mountain (1 95...The present study was carried out on natural Korean fir forests (Abies koreana) growing in Mount Halla in Jeju Island, Korea (33° 13-36' N and 126° 12-57' E). Mount Halla is the highest mountain (1 950 m a.s.h) in South Korea. On the Korean fir forests near the top of Mount Halla in Korea, we established permanent plots between dieback and healthy population. Each permanent plot includes both dieback and relatively healthy Korean fir individuals. Three sites in this study showed similar altitude, topographic position, aspects, slope, diameter at breast height, average height and ages. Net photosynthetic rates (PN) on different temperature regimes were evaluated to explain the forest dieback phenomenon on Korean fir populations. Light response curves were determined on three different temperature regimes: 15 ℃, 20℃ and 25℃. The irradiance response curve showed higher values in lower air temperatures. Generally, irradiance response curves of healthy Korean fir populations were higher than the dieback population at all sites.展开更多
To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the...To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the photosynthetic characteristics and grain yield of winter wheat.Four irrigation lower limits were set for initiating irrigation(i.e.,light drought(LD,50%,55%,60%and 50%of field holding capacity(FC)at the seedling-regreening,jointing,heading and filling-ripening stages,respectively),medium drought(MD,40%,50%,55%and 45%of FC at the same stages,respectively),adequate moisture(CK1,60%,65%,70%and 60%of FC at the same stages,respectively),heavy drought(CK2,35%,40%,45%and 40%of FC at the same stages,respectively))and five irrigation quota per event(30,60,90,120 and 180 mm)were set for each lower limit.We found that the increase of drought stress is conducive to normal photosynthesis of winter wheat leaves which is supported by the following findings.First,photosynthetic rate(Pn)of LD60 treatment was higher than that of LD30,LD90,LD120,LD180,MD30,MD60,MD90,MD120 and MD180.Then,Under the 90 mm irrigation quota treatment,the yield of winter wheat basically increased with the increase of irrigation’s lower limit.Moreover,With the increase in irrigation quota,the yield of winter wheat increased,and the water use efficiency(WUE)of winter wheat increased at first and then decreased.In addition,compared with the LD30,MD30,MD60,MD90,MD120,and MD180,the yield of winter wheat in LD60 treatment increased by about 3.23%(3-year average),32.3%,19.9%,11.7%,10.1%,and 14.6%.At the same time,the WUE with LD60 treatment of winter wheat was significantly higher than LD90,LD120,LD180,MD30,MD60,MD90,MD120,MD180 treatments.There was a positive correlation between soil volumetric water content and Pn and between yield and Pn.The key period for yield formation in winter wheat is 180 days after sowing.In conclusion,to achieve the dual goals of stable winter wheat yield and efficient utilization of water resources in this region,the suitable threshold for initiating deficit irrigation of winter wheat is the LD60 treatment.This conclusion provides data support for water-saving and stable yield of winter wheat in this area.展开更多
The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of...The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of high fossil fuel consumption which plays a pivotal role in the greenhouse effect, Jatropha curcas biodiesel has been considered a potential alternative source of clean energy (biodiesel is carbon neutral). However, the ability of Jatropha curcas, as a candidate source of alternative of clean energy, to grow in marginal and dry soils, has been poorly elucidated. This study, therefore aimed at investigating whether Jatropha curcas leaves could switch from carrying out C<sub>3</sub> photosynthetic pathway to Crassulacean Acid Metabolism (CAM) as a strategy to improve its water deficit tolerance. Thirty-five-day-old Jatropha curcas accessions, from three different climatic zones of Botswana, viz., Mmadinare (Central zone), Thamaga (Southern zone) and Maun (Northern zone), were subjected to water stress, by with-holding irrigation with half-strength Hoagland culture solution. Net photosynthetic rate, transpiration and stomatal conductance were measured at weekly intervals. The leaf pH was measured to determine whether there was a decrease in pH (leaf acidification) of the leaves during the night, when the plants experienced water deficit stress. All the accessions exhibited marked reduction in all the measured photosynthetic characteristics when experience water deficit stress. However, a measurable CO<sub>2</sub> uptake was carried out by leaves of all the accessions, in the wake of marked decreases in stomatal conductance. There is evidence to suggest that when exposed to water stress J. curcas accessions switch from C<sub>3</sub> mode of photosynthesis to CAM photosynthetic pathway. This is attested to by the slightly low leaf pH at night. Thamaga accession exhibited an earlier stomatal closure than the other two accessions. This resulted in Thamaga accession displaying a slightly lower dry weight than both Mmadinare and Maun accessions. It could be concluded that Jatropha curcas appeared to tolerate water deficit stress due to its ability of switching from C<sub>3</sub> photosynthetic pathway to the CAM photosynthetic pathway, but with a cost to biomass accumulation, as demonstrated by slightly more reduced CO<sub>2</sub> assimilation by Thamaga accession, than the other two accessions.展开更多
[Objectives]This study was conducted to clarify the physiological mechanism of growth of hybrid mulberry after autumn cutting in herbaceous cultivation.[Methods]The net photosynthetic rate(Pn),stomatal conductance(Gs)...[Objectives]This study was conducted to clarify the physiological mechanism of growth of hybrid mulberry after autumn cutting in herbaceous cultivation.[Methods]The net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci)and transpiration rate(Tr)of leaves were measured under different treatment conditions using a Li-6400XT portable photosynthetic measurement system.[Results]After harvest of mulberry shoots in autumn,leaf Pn decreased with the extension of branch and leaf growth time,while Gs,Ci and Tr showed a trend of first increasing and then decreasing.The Pn was affected by factors such as leaf positions,mulberry varieties,cutting,and fertilization,which was manifested by the 6 th to 10 th mature leaves>the 2 nd to 4 th tender leaves,‘Nongsang 14’>hybrid mulberry,intermediate cut>uncut,and normal fertilization>no fertilization,all showing significant differences(P<0.05).Combined with the results of Gs,Ci and Tr measurements,it was found that the changes in leaf Pn were mainly related to non-stomatal factors.Timely cutting and harvesting during summer and autumn could significantly improve the photosynthetic rate of mulberry leaf,which was beneficial for extending the late autumn growth period of hybrid mulberry under herbaceous cultivation.[Conclusions]This study provides a theoretical reference for mulberry shoot harvesting techniques in summer and autumn.展开更多
The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental line...The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental lines and traditional hybrid rice Shanyou 63 developed from three parental lines. The results showed that, as compared to Shanyou 63, the net photosynthetic rate of Liangyoupeijiu and X07S/Zihui 100 was 9.1% and 11.9% higher, the transpiration rate was 37.4% and 31.4% lower, and their water use efficiency was 74.2% and 63.5% higher respectively. After strong light (2 000 μmol photons·m -2 ·s -1 ) treatment for 2 h, the photochemical quantum yield and the photochemical quenching increased by 37.0% and 18.0% respectively in Liangyoupeijiu, 28.3% and 46.2% in X07S/Zihui 100, but decreased a little in Shanyou 63. The non_photochemical quenching decreased in Liangyoupeijiu and X07S/Zihui 100 (about 50%) but increased greatly in Shanyou 63 (about 50%). Better photosynthetic functions, higher water use efficiency and stronger resistance to photoinhibition, may be the physiological basis for the super high_yield of the two hybrid rice under study.展开更多
Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductan...Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductance and stomatal limitation value tended to decline simultaneously, while the interoellularCO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of Photosynthesis suggeSted by Fmrquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosyntheticrate, whieh may show that these two factors contribute primarily to the seasonal changeS in CO2 assimilation.展开更多
Four winter wheat (Triticum aestivum L.) varieties ('JD 8', 'Jing 411','Centurk' and 'Tam 202') were used to study the effect of heat stress on photosynthetic characteristics of flag le...Four winter wheat (Triticum aestivum L.) varieties ('JD 8', 'Jing 411','Centurk' and 'Tam 202') were used to study the effect of heat stress on photosynthetic characteristics of flag leaf blade, nag leaf sheath, peduncle, glume, lemma and awn during grain-filling stage. The results showed that heat acclimation during grain-filling stage increased thermotolerance of wheat with significant differences among different green organs. During heat stress, the decreases of the efficiency of primary light energy conversion (F-v/F-m) of PS II and pigment (chlorophyll and carotenoid) content were much slower in peduncle, flag leaf sheath and glume than in nag leaf blade, lemma and ann; and the percentage of decrease in net photosynthetic rate (P-n) of ear was lower than that of the nag leaf blade. The measured photosynthetic parameters (F-v/F-m, P-n and pigment content) of 'JD 8', a relatively heat tolerant variety, declined more slowly than those of the other three varieties during the whole heat stress period.展开更多
[ Objective] Study on the photosynthesis and influencing factors in super high-yield combination C Liangyou H255. [ Method] The photosynthetic characteristies were measured at a hot and muggy day under natural conditi...[ Objective] Study on the photosynthesis and influencing factors in super high-yield combination C Liangyou H255. [ Method] The photosynthetic characteristies were measured at a hot and muggy day under natural conditions. [ Result] A respective single peak at 11:30 was observed in diurnal variation curves of net photosynthetic rate (Pn) and transpiration rate(Tr). Correlation analysis shows that Pn presents an extremely significant correlation with photon flux densities (PFD) of photosynthetically active radiation, in comparison assumes a significant correlation either with stomatal conductance (Gs) or with ambient CO2 concentration (Ca). [ Conclusion] Gs followed by PFD presented most influence on Pn of super high-yield combination C Liangyou H255.展开更多
[Objective] The aim of this study was to explore the daily change of photosyntheticratefor Prunus domestica ×armeniacain different growing seasons. The study can provide theoretical basis for arid area high yield...[Objective] The aim of this study was to explore the daily change of photosyntheticratefor Prunus domestica ×armeniacain different growing seasons. The study can provide theoretical basis for arid area high yield and quality cultivation.[Method] The photosynthetic physiological properties of leaves of different types of Prunus domestica × armeniaca were measured by the Li-6400 portable photosynthesis system indifferent seasons. By this method could analysis of photosyntheticcharacteristicsfor different types of Prunus domestica×armeniaca in different seasons.[Result] Daily change of photosyntheticrate(Pn) for Prunus domestica×armeniaca in differentseasons showed a "double-peak" curve. The peak values were at 10:00 and16:00. The Pn of ‘Fengweihuanghou', ‘Konglongdan', ‘Weihou', ‘Weiwang' and‘Weidi' reached the maximum in July, theywere 13.75, 14.76, 12.96, 13.3, and 11.9μmol/(m^2·s), respectively. The Pn of Prunus domestica×armeniaca reached minimumin August, they were 9.78, 10.71, 12.02, 10.43 μmol/(m^2·s). The Pn overall average of ‘Konglongdan' was highest,it reached 12.65 μmol/(m^2·s).The Pn overall average of ‘Weiwang' was lowest, it reached 11.31μmol/(m^2·s). There were extremely significant positive correlation between the Pn and Gs(P0.01). [Conclusion] Daily change of photosyntheticrate for Prunus domestica ×armeniaca in differentseasons showed a "double-peak" curve, showing significant phenomenon of "midday depression".The photosynthesis intensity of Prunus domestica ×armeniaca was strongest in July, and the photosynthesis intensity was weakest in August. ‘Konglongdan'showed the strongest photosynthesis capacity, ‘Weihou' and ‘Weiwang', followed.There were highest correlation between the Pn and stoma conductance(Gs).展开更多
[ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as m...[ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as materials, the pathogen of tomato powdery mildew was artificially inoculated. After the varieties were infected, the parameters including net photosynthetic rate, stomatal conductance and transpiration rate of tomato leaf were measured by Li-6400 portable photo- synthesis detector under natural lighting conditions. [ Result] The net photosynthetic rate, stomatal conductance and transpiration rate of four tomato varieties all decreased after infection. However, the decrease extent of these parameters of four varieties was different. The parameters of seriously damaged Jinyangdajuxdng ( No. 4) and Xinsheng No. 1 ( No. 5 ) decreased greatly, while the parameters of slightly damaged Lujia ( No. 13 ) and improved 98-6 decreased lightly. [ Condu- sion] The results could provide theoretical basis for the study on pathogenic mechanism, new prevention way and resistance breeding of tomato powdery mildew.展开更多
Climate change has limited crop productivity worldwide.Understanding crop response to global climate changes is vital to maintaining agricultural sustainable development.A two-year experiment was conducted to investig...Climate change has limited crop productivity worldwide.Understanding crop response to global climate changes is vital to maintaining agricultural sustainable development.A two-year experiment was conducted to investigate the effects of warming and drought on crop growth and winter wheat yield production.The results showed that both warming and drought shortened the crop growth period,reduced the leaf area index,and increased winter wheat biomass accumulation.Under sufficient water supply conditions,warming would increase photosynthetic and transpiration rates and water use efficiency,while under water deficit conditions,the opposite was observed.Under warming conditions,the grain yield of the water deficit treatment was 8.9%lower than that of the sufficient water supply treatment.Under non-warming conditions,the grain yield of water deficit treatment was 12.4%lower than that of the sufficient water supply.Under the conditions of water-sufficient supply,the grain yield of the warming treatment was 4.4%lower than that of the non-warming treatment,and under the conditions of water deficit,the grain yield of the warming treatment was 1.3%lower than that of the non-warming treatment.Warming tends to decrease wheat growth and grain yield,but sufficient water supply could improve winter wheat’s water use efficiency and reduce the warming limitation on wheat production.展开更多
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ...To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.展开更多
Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such...Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such method,alternate partial root-zone irrigation(APRI),has been practiced worldwide,but there is limited information on the performance of different irrigation regimes and nitrogen(N)rates under APRI.The objectives of this study were to investigate the effects of varying irrigation regimes and N rates on shoot growth,grain yield and WUE of maize(Zea mays L.)grown under APRI in the Hexi Corridor area of Northwest China in 2014 and 2015.The three N rates were 100,200 and 300 kg N ha–1,designated N1,N2 and N3,respectively.The three irrigation regimes of 45–50%,60–65%and 75–80%field capacity(FC)throughout the maize growing season,designated W1,W2 and W3,respectively,were applied in combination with each N rate.The results showed that W2 and W3 significantly increased the plant height,stem diameter,crop growth rate,chlorophyll SPAD value,net photosynthetic rate(Pn),biomass,grain yield,ears per ha,kernels per cob,1000-kernel weight,harvest index,evapotranspiration and leaf area index(LAI)compared to W1 at each N rate.The N2 and N3 treatments increased those parameters compared to N1 in each irrigation treatment.Increasing the N rate from the N2 to N3 resulted in increased biomass and grain yield under W3 while it had no impact on those under the W1 and W2 treatments.The W3 N3 and W2 N2 and W2 N3 treatments achieved the greatest and the second-greatest biomass and grain yield,respectively.Increasing the N rate significantly enhanced the maximum LAI(LAI at the silking stage)and Pn under W3,suggesting that the interaction of irrigation and fertilizer N management can effectively improve leaf growth and development,and consequently provide high biomass and grain yield of maize.The W2 N2,W2 N3 and W3 N3 treatments attained the greatest WUE among all the treatments.Thus,either 60–65%FC coupled with 200–300 kg N ha–1 or 75–80%FC coupled with 300 kg N ha–1 is proposed as a better pattern of irrigation and nitrogen application with positive regulative effects on grain yield and WUE of maize under APRI in the Hexi Corridor area of Northwest China and other regions with similar environments.These results can provide a basis for indepth understanding of the mechanisms of grain yield and WUE to supply levels of water and nitrogen.展开更多
[Objective] This study aimed to investigate the effect of nitrogen fertilizer on photosynthetic rate of Leymus chinensis in the grasslands of different degrading degrees. [Method] With the L. chinensis in Inner Mongol...[Objective] This study aimed to investigate the effect of nitrogen fertilizer on photosynthetic rate of Leymus chinensis in the grasslands of different degrading degrees. [Method] With the L. chinensis in Inner Mongolia Baiyinxile Ranch as the research object, different rations of nitrogen fertilizer were applied to the grassland (0, 30, 50, 80 g/m^2). The effect of different gradients of nitrogen fertilizer on photo- synthetic rate of Leymus chinensis, and the effect on grasslands of different degrading degrees were analyzed. [Result] The photosynthetic rate of L. chinensis in- creased with the increase of nitrogen gradients; in the grassland communities with different degrading degrees, the responses of the photosynthetic rate of L. chinensis to nitrogen fertilizer were different, and the response in the grassland with severe degradation was the best. [Conclusion] Nitrogen fertilizer played an important role in enhancing the restoration degree of grassland.展开更多
Different strategies of the application of nutrients are required to overcome the adverse effects of mustard (Brassica juncea L.) in response to NaCl stress. The objective of the present study was to determine if di...Different strategies of the application of nutrients are required to overcome the adverse effects of mustard (Brassica juncea L.) in response to NaCl stress. The objective of the present study was to determine if different added levels of nitrogen (N) in growth medium could alleviate the adverse effects of salt stress on photosynthetic capacity and accumulation of osmoprotectants and nutrients. 14 days mustard seedlings of salt-sensitive (cv. Chuutki) and salt-tolerant (cv. Radha) genotypes were fed with: (i) 0 mmol L^-1 NaCl + 0 mg N kg^-1 sand (control), (ii) 90 mmol L^-1 NaCl + 30 mg N kg^-1 sand, (iii) 90 mmol L^-1 NaCl +60 mg N kg^-1 sand, (iv) 90 mmol L^-1 NaCl +90 mg N kg^-1 sand and (v) 90 mmol L^-1NaCl+ 120 mg N kg^-1 sand. Under the condition of salinity stress, N application caused a significant ameliorative effect on both genotypes with respect to growth attributes [fresh weight (FW) and dry weight (DW)] and physio-biochemical parameters [percent water content (WC), net photosynthetic rate (PN), stomatal conductance (gs), total chlorophyll (Ch1), carbonic anhydrase (CA) activity and malondialdehyde (MDA), nitrogen (N), potassium (K) and sodium (Na) contents, and K/Na ratio] and yield attributes (number of pods/plant, seeds/pod and seed yield/plant). The salt-tolerant genotype exhibited maximum value for growth, physio-biochemical and yield attributes at 60 mg N kg 1 sand than that of salt-sensitive genotype. These results suggest that application of N may ameliorate most of the attributes and prove to be a physiological remedy to increase the tolerance against the ill effects of salt stress in Brassicas.展开更多
The study comparatively examined the leaf photosynthetic capacities of different adzuki bean cultivars, high-yield 2000-75 and Jihong 9218, and low-yield Hongbao 1 and Wanxuan 1 from flowering to ripening. It showed t...The study comparatively examined the leaf photosynthetic capacities of different adzuki bean cultivars, high-yield 2000-75 and Jihong 9218, and low-yield Hongbao 1 and Wanxuan 1 from flowering to ripening. It showed that after flowering, the leaves of the cultivars gradually aged, the leaf chlorophyll (Chl.), soluble protein (SP) contents, net photosynthetic rates (Pn), transpiration rates (Tr) and stomatal conductance (G) of the cultivars tended to decline, but the leaf intercellular CO2 concentration (Ci) of the cultivars tended to rise. The leaf photosynthetic capacities of the cultivars decreased gradually from the lower to the upper nodes. The dry seed yields of the cultivars were positively correlated with their leaf Chl., SP, Pn, and Tr and Gs, and negatively associated with their leaf Ci. At the late growth stages, the high-yield cultivars maintained higher leaf Chl. contents, SP contents, Pn, Tr, and Gs than the low-yield cultivars, indicating that leaf photosynthetic capacity was one of important yield-affecting factors of adzuki bean. Therefore, it was important for a crop at the crucial stage of yield formation to maintain a high leaf chlorophyll content and a high leaf photosynthetic capacity and delay leaf aging.展开更多
Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we...Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.展开更多
A total of nine soybean (Glycine max (L.) Merr.) cultivars were divided into three yield levels which were planted under the same environmental condition. The net photosynthetic rate was measured by LI-6400 portab...A total of nine soybean (Glycine max (L.) Merr.) cultivars were divided into three yield levels which were planted under the same environmental condition. The net photosynthetic rate was measured by LI-6400 portable photosynthesis system. The chlorophyll content and specific leaf weight were measured with regular methods. The results showed that the specific leaf weight, chlorophyll content and net photosynthetic rate of high yield varieties were higher than those of low yield varieties. The yield had a significantly positive correlation with the net photosynthetic rate. With the improvement of modem technology, the net photosynthetic rate could be measured quickly and exactly. Hence, net photosynthetic rate could be used as an effective index in the selection of high yield soybean.展开更多
文摘Diospyros texana (Texas persimmon) is a secondary species in most Juniperus ashei/Quercus fusiformis woodlands in central Texas. It has high density, but plants are mostly in the community understory. Light response curves at ambient and elevated levels of CO<sub>2</sub> and temperature were measured for D. texana. The A<sub>net</sub> (photosynthetic rate) increased significantly as both light level and CO<sub>2</sub> levels increased but not temperature. The A<sub>max</sub> (maximum photosynthetic rate) of D. texana in full sun at elevated levels of CO<sub>2</sub> was increased for all treatments. Stomatal conductance increased with levels of CO<sub>2</sub> but only if the interaction was removed from the model. Intercellular levels of CO<sub>2</sub> increased with both temperature and CO<sub>2</sub> treatments as did water use efficiency (WUE). Furthermore, light saturation (L<sub>sat</sub>) increased with CO<sub>2</sub> treatments and light compensation (L<sub>cp</sub>) increased with temperature. The dark respiration (R<sub>d</sub>) increased with both temperature and CO<sub>2</sub> treatments. Markov population models suggested D. texana populations would remain ecologically similar in the future. However, sub-canopy light levels and herbivory should be considered when examining population projections. For example, Juniperus ashei juveniles are not recruited into any canopy unless there are high light levels. Herbivory reduces the success of Quercus juveniles from reaching the canopy. These factors do not seem to be a problem for D. texana juveniles which would allow them to reach the canopy without need of a high light gap and are not prevented by herbivory. Thus, Juniperus/Quercus woodlands will change in the future to woodlands with D. texana a more common species.
文摘Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures.
基金the Restoration Project Fund provided by the Korea ForestService (#S210606L0101104).
文摘The present study was carried out on natural Korean fir forests (Abies koreana) growing in Mount Halla in Jeju Island, Korea (33° 13-36' N and 126° 12-57' E). Mount Halla is the highest mountain (1 950 m a.s.h) in South Korea. On the Korean fir forests near the top of Mount Halla in Korea, we established permanent plots between dieback and healthy population. Each permanent plot includes both dieback and relatively healthy Korean fir individuals. Three sites in this study showed similar altitude, topographic position, aspects, slope, diameter at breast height, average height and ages. Net photosynthetic rates (PN) on different temperature regimes were evaluated to explain the forest dieback phenomenon on Korean fir populations. Light response curves were determined on three different temperature regimes: 15 ℃, 20℃ and 25℃. The irradiance response curve showed higher values in lower air temperatures. Generally, irradiance response curves of healthy Korean fir populations were higher than the dieback population at all sites.
基金supported jointly by the Natural Science Foundation of China (No.41807041)the Ninth Batch of Key Disciplines in Henan Province—Mechanical Design,Manufacturing and Automation (JG[2018]No.119).
文摘To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the photosynthetic characteristics and grain yield of winter wheat.Four irrigation lower limits were set for initiating irrigation(i.e.,light drought(LD,50%,55%,60%and 50%of field holding capacity(FC)at the seedling-regreening,jointing,heading and filling-ripening stages,respectively),medium drought(MD,40%,50%,55%and 45%of FC at the same stages,respectively),adequate moisture(CK1,60%,65%,70%and 60%of FC at the same stages,respectively),heavy drought(CK2,35%,40%,45%and 40%of FC at the same stages,respectively))and five irrigation quota per event(30,60,90,120 and 180 mm)were set for each lower limit.We found that the increase of drought stress is conducive to normal photosynthesis of winter wheat leaves which is supported by the following findings.First,photosynthetic rate(Pn)of LD60 treatment was higher than that of LD30,LD90,LD120,LD180,MD30,MD60,MD90,MD120 and MD180.Then,Under the 90 mm irrigation quota treatment,the yield of winter wheat basically increased with the increase of irrigation’s lower limit.Moreover,With the increase in irrigation quota,the yield of winter wheat increased,and the water use efficiency(WUE)of winter wheat increased at first and then decreased.In addition,compared with the LD30,MD30,MD60,MD90,MD120,and MD180,the yield of winter wheat in LD60 treatment increased by about 3.23%(3-year average),32.3%,19.9%,11.7%,10.1%,and 14.6%.At the same time,the WUE with LD60 treatment of winter wheat was significantly higher than LD90,LD120,LD180,MD30,MD60,MD90,MD120,MD180 treatments.There was a positive correlation between soil volumetric water content and Pn and between yield and Pn.The key period for yield formation in winter wheat is 180 days after sowing.In conclusion,to achieve the dual goals of stable winter wheat yield and efficient utilization of water resources in this region,the suitable threshold for initiating deficit irrigation of winter wheat is the LD60 treatment.This conclusion provides data support for water-saving and stable yield of winter wheat in this area.
文摘The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of high fossil fuel consumption which plays a pivotal role in the greenhouse effect, Jatropha curcas biodiesel has been considered a potential alternative source of clean energy (biodiesel is carbon neutral). However, the ability of Jatropha curcas, as a candidate source of alternative of clean energy, to grow in marginal and dry soils, has been poorly elucidated. This study, therefore aimed at investigating whether Jatropha curcas leaves could switch from carrying out C<sub>3</sub> photosynthetic pathway to Crassulacean Acid Metabolism (CAM) as a strategy to improve its water deficit tolerance. Thirty-five-day-old Jatropha curcas accessions, from three different climatic zones of Botswana, viz., Mmadinare (Central zone), Thamaga (Southern zone) and Maun (Northern zone), were subjected to water stress, by with-holding irrigation with half-strength Hoagland culture solution. Net photosynthetic rate, transpiration and stomatal conductance were measured at weekly intervals. The leaf pH was measured to determine whether there was a decrease in pH (leaf acidification) of the leaves during the night, when the plants experienced water deficit stress. All the accessions exhibited marked reduction in all the measured photosynthetic characteristics when experience water deficit stress. However, a measurable CO<sub>2</sub> uptake was carried out by leaves of all the accessions, in the wake of marked decreases in stomatal conductance. There is evidence to suggest that when exposed to water stress J. curcas accessions switch from C<sub>3</sub> mode of photosynthesis to CAM photosynthetic pathway. This is attested to by the slightly low leaf pH at night. Thamaga accession exhibited an earlier stomatal closure than the other two accessions. This resulted in Thamaga accession displaying a slightly lower dry weight than both Mmadinare and Maun accessions. It could be concluded that Jatropha curcas appeared to tolerate water deficit stress due to its ability of switching from C<sub>3</sub> photosynthetic pathway to the CAM photosynthetic pathway, but with a cost to biomass accumulation, as demonstrated by slightly more reduced CO<sub>2</sub> assimilation by Thamaga accession, than the other two accessions.
基金Supported by Suzhou Agricultural Science and Technology Planning Project (SNG2018093).
文摘[Objectives]This study was conducted to clarify the physiological mechanism of growth of hybrid mulberry after autumn cutting in herbaceous cultivation.[Methods]The net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci)and transpiration rate(Tr)of leaves were measured under different treatment conditions using a Li-6400XT portable photosynthetic measurement system.[Results]After harvest of mulberry shoots in autumn,leaf Pn decreased with the extension of branch and leaf growth time,while Gs,Ci and Tr showed a trend of first increasing and then decreasing.The Pn was affected by factors such as leaf positions,mulberry varieties,cutting,and fertilization,which was manifested by the 6 th to 10 th mature leaves>the 2 nd to 4 th tender leaves,‘Nongsang 14’>hybrid mulberry,intermediate cut>uncut,and normal fertilization>no fertilization,all showing significant differences(P<0.05).Combined with the results of Gs,Ci and Tr measurements,it was found that the changes in leaf Pn were mainly related to non-stomatal factors.Timely cutting and harvesting during summer and autumn could significantly improve the photosynthetic rate of mulberry leaf,which was beneficial for extending the late autumn growth period of hybrid mulberry under herbaceous cultivation.[Conclusions]This study provides a theoretical reference for mulberry shoot harvesting techniques in summer and autumn.
基金The State Key Basic Research and Development Plan(G1998010100)The Innovative Foundation of Laboratory of Photosynthesis Basic Research,Insitute of Botany,The Chinese Academy of Sciences
文摘The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental lines and traditional hybrid rice Shanyou 63 developed from three parental lines. The results showed that, as compared to Shanyou 63, the net photosynthetic rate of Liangyoupeijiu and X07S/Zihui 100 was 9.1% and 11.9% higher, the transpiration rate was 37.4% and 31.4% lower, and their water use efficiency was 74.2% and 63.5% higher respectively. After strong light (2 000 μmol photons·m -2 ·s -1 ) treatment for 2 h, the photochemical quantum yield and the photochemical quenching increased by 37.0% and 18.0% respectively in Liangyoupeijiu, 28.3% and 46.2% in X07S/Zihui 100, but decreased a little in Shanyou 63. The non_photochemical quenching decreased in Liangyoupeijiu and X07S/Zihui 100 (about 50%) but increased greatly in Shanyou 63 (about 50%). Better photosynthetic functions, higher water use efficiency and stronger resistance to photoinhibition, may be the physiological basis for the super high_yield of the two hybrid rice under study.
文摘Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductance and stomatal limitation value tended to decline simultaneously, while the interoellularCO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of Photosynthesis suggeSted by Fmrquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosyntheticrate, whieh may show that these two factors contribute primarily to the seasonal changeS in CO2 assimilation.
文摘Four winter wheat (Triticum aestivum L.) varieties ('JD 8', 'Jing 411','Centurk' and 'Tam 202') were used to study the effect of heat stress on photosynthetic characteristics of flag leaf blade, nag leaf sheath, peduncle, glume, lemma and awn during grain-filling stage. The results showed that heat acclimation during grain-filling stage increased thermotolerance of wheat with significant differences among different green organs. During heat stress, the decreases of the efficiency of primary light energy conversion (F-v/F-m) of PS II and pigment (chlorophyll and carotenoid) content were much slower in peduncle, flag leaf sheath and glume than in nag leaf blade, lemma and ann; and the percentage of decrease in net photosynthetic rate (P-n) of ear was lower than that of the nag leaf blade. The measured photosynthetic parameters (F-v/F-m, P-n and pigment content) of 'JD 8', a relatively heat tolerant variety, declined more slowly than those of the other three varieties during the whole heat stress period.
文摘[ Objective] Study on the photosynthesis and influencing factors in super high-yield combination C Liangyou H255. [ Method] The photosynthetic characteristies were measured at a hot and muggy day under natural conditions. [ Result] A respective single peak at 11:30 was observed in diurnal variation curves of net photosynthetic rate (Pn) and transpiration rate(Tr). Correlation analysis shows that Pn presents an extremely significant correlation with photon flux densities (PFD) of photosynthetically active radiation, in comparison assumes a significant correlation either with stomatal conductance (Gs) or with ambient CO2 concentration (Ca). [ Conclusion] Gs followed by PFD presented most influence on Pn of super high-yield combination C Liangyou H255.
基金Supported by High-quality and High-efficient Cultivation Technology Demonstration and Promotion of Apricot and Plum(ZYLYKJTG2015020)~~
文摘[Objective] The aim of this study was to explore the daily change of photosyntheticratefor Prunus domestica ×armeniacain different growing seasons. The study can provide theoretical basis for arid area high yield and quality cultivation.[Method] The photosynthetic physiological properties of leaves of different types of Prunus domestica × armeniaca were measured by the Li-6400 portable photosynthesis system indifferent seasons. By this method could analysis of photosyntheticcharacteristicsfor different types of Prunus domestica×armeniaca in different seasons.[Result] Daily change of photosyntheticrate(Pn) for Prunus domestica×armeniaca in differentseasons showed a "double-peak" curve. The peak values were at 10:00 and16:00. The Pn of ‘Fengweihuanghou', ‘Konglongdan', ‘Weihou', ‘Weiwang' and‘Weidi' reached the maximum in July, theywere 13.75, 14.76, 12.96, 13.3, and 11.9μmol/(m^2·s), respectively. The Pn of Prunus domestica×armeniaca reached minimumin August, they were 9.78, 10.71, 12.02, 10.43 μmol/(m^2·s). The Pn overall average of ‘Konglongdan' was highest,it reached 12.65 μmol/(m^2·s).The Pn overall average of ‘Weiwang' was lowest, it reached 11.31μmol/(m^2·s). There were extremely significant positive correlation between the Pn and Gs(P0.01). [Conclusion] Daily change of photosyntheticrate for Prunus domestica ×armeniaca in differentseasons showed a "double-peak" curve, showing significant phenomenon of "midday depression".The photosynthesis intensity of Prunus domestica ×armeniaca was strongest in July, and the photosynthesis intensity was weakest in August. ‘Konglongdan'showed the strongest photosynthesis capacity, ‘Weihou' and ‘Weiwang', followed.There were highest correlation between the Pn and stoma conductance(Gs).
基金Supported by Research Foundation of Sichuan Education Department "Utilization of Diversity of Tomato Varieties for Continuous Control of Tomato Disea-ses"(07ZC047)~~
文摘[ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as materials, the pathogen of tomato powdery mildew was artificially inoculated. After the varieties were infected, the parameters including net photosynthetic rate, stomatal conductance and transpiration rate of tomato leaf were measured by Li-6400 portable photo- synthesis detector under natural lighting conditions. [ Result] The net photosynthetic rate, stomatal conductance and transpiration rate of four tomato varieties all decreased after infection. However, the decrease extent of these parameters of four varieties was different. The parameters of seriously damaged Jinyangdajuxdng ( No. 4) and Xinsheng No. 1 ( No. 5 ) decreased greatly, while the parameters of slightly damaged Lujia ( No. 13 ) and improved 98-6 decreased lightly. [ Condu- sion] The results could provide theoretical basis for the study on pathogenic mechanism, new prevention way and resistance breeding of tomato powdery mildew.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879267)the China Agriculture Research System of MOF and MARA(Grant No.CARS-03-19)the Agricultural Science and Technology Innovation Program(ASTIP).
文摘Climate change has limited crop productivity worldwide.Understanding crop response to global climate changes is vital to maintaining agricultural sustainable development.A two-year experiment was conducted to investigate the effects of warming and drought on crop growth and winter wheat yield production.The results showed that both warming and drought shortened the crop growth period,reduced the leaf area index,and increased winter wheat biomass accumulation.Under sufficient water supply conditions,warming would increase photosynthetic and transpiration rates and water use efficiency,while under water deficit conditions,the opposite was observed.Under warming conditions,the grain yield of the water deficit treatment was 8.9%lower than that of the sufficient water supply treatment.Under non-warming conditions,the grain yield of water deficit treatment was 12.4%lower than that of the sufficient water supply.Under the conditions of water-sufficient supply,the grain yield of the warming treatment was 4.4%lower than that of the non-warming treatment,and under the conditions of water deficit,the grain yield of the warming treatment was 1.3%lower than that of the non-warming treatment.Warming tends to decrease wheat growth and grain yield,but sufficient water supply could improve winter wheat’s water use efficiency and reduce the warming limitation on wheat production.
基金supported by the National Natural Science Foundation of China(Nos.41621061,31500511)the Natural Science Foundation of Shandong Province of China(No.ZR2015CL044)
文摘To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.
基金The study was funded by the National Natural Science Foundation of China(51809006 and 51079124).
文摘Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such method,alternate partial root-zone irrigation(APRI),has been practiced worldwide,but there is limited information on the performance of different irrigation regimes and nitrogen(N)rates under APRI.The objectives of this study were to investigate the effects of varying irrigation regimes and N rates on shoot growth,grain yield and WUE of maize(Zea mays L.)grown under APRI in the Hexi Corridor area of Northwest China in 2014 and 2015.The three N rates were 100,200 and 300 kg N ha–1,designated N1,N2 and N3,respectively.The three irrigation regimes of 45–50%,60–65%and 75–80%field capacity(FC)throughout the maize growing season,designated W1,W2 and W3,respectively,were applied in combination with each N rate.The results showed that W2 and W3 significantly increased the plant height,stem diameter,crop growth rate,chlorophyll SPAD value,net photosynthetic rate(Pn),biomass,grain yield,ears per ha,kernels per cob,1000-kernel weight,harvest index,evapotranspiration and leaf area index(LAI)compared to W1 at each N rate.The N2 and N3 treatments increased those parameters compared to N1 in each irrigation treatment.Increasing the N rate from the N2 to N3 resulted in increased biomass and grain yield under W3 while it had no impact on those under the W1 and W2 treatments.The W3 N3 and W2 N2 and W2 N3 treatments achieved the greatest and the second-greatest biomass and grain yield,respectively.Increasing the N rate significantly enhanced the maximum LAI(LAI at the silking stage)and Pn under W3,suggesting that the interaction of irrigation and fertilizer N management can effectively improve leaf growth and development,and consequently provide high biomass and grain yield of maize.The W2 N2,W2 N3 and W3 N3 treatments attained the greatest WUE among all the treatments.Thus,either 60–65%FC coupled with 200–300 kg N ha–1 or 75–80%FC coupled with 300 kg N ha–1 is proposed as a better pattern of irrigation and nitrogen application with positive regulative effects on grain yield and WUE of maize under APRI in the Hexi Corridor area of Northwest China and other regions with similar environments.These results can provide a basis for indepth understanding of the mechanisms of grain yield and WUE to supply levels of water and nitrogen.
基金Supported by the National Natural Science Foundation of China(30771528,30970494)the Special Fund for Environment Protection Research in Public Interest of China(201109025-03B)the Fundamental Research Funds for the Central Universities(DC110105,DC120101142)~~
文摘[Objective] This study aimed to investigate the effect of nitrogen fertilizer on photosynthetic rate of Leymus chinensis in the grasslands of different degrading degrees. [Method] With the L. chinensis in Inner Mongolia Baiyinxile Ranch as the research object, different rations of nitrogen fertilizer were applied to the grassland (0, 30, 50, 80 g/m^2). The effect of different gradients of nitrogen fertilizer on photo- synthetic rate of Leymus chinensis, and the effect on grasslands of different degrading degrees were analyzed. [Result] The photosynthetic rate of L. chinensis in- creased with the increase of nitrogen gradients; in the grassland communities with different degrading degrees, the responses of the photosynthetic rate of L. chinensis to nitrogen fertilizer were different, and the response in the grassland with severe degradation was the best. [Conclusion] Nitrogen fertilizer played an important role in enhancing the restoration degree of grassland.
文摘Different strategies of the application of nutrients are required to overcome the adverse effects of mustard (Brassica juncea L.) in response to NaCl stress. The objective of the present study was to determine if different added levels of nitrogen (N) in growth medium could alleviate the adverse effects of salt stress on photosynthetic capacity and accumulation of osmoprotectants and nutrients. 14 days mustard seedlings of salt-sensitive (cv. Chuutki) and salt-tolerant (cv. Radha) genotypes were fed with: (i) 0 mmol L^-1 NaCl + 0 mg N kg^-1 sand (control), (ii) 90 mmol L^-1 NaCl + 30 mg N kg^-1 sand, (iii) 90 mmol L^-1 NaCl +60 mg N kg^-1 sand, (iv) 90 mmol L^-1 NaCl +90 mg N kg^-1 sand and (v) 90 mmol L^-1NaCl+ 120 mg N kg^-1 sand. Under the condition of salinity stress, N application caused a significant ameliorative effect on both genotypes with respect to growth attributes [fresh weight (FW) and dry weight (DW)] and physio-biochemical parameters [percent water content (WC), net photosynthetic rate (PN), stomatal conductance (gs), total chlorophyll (Ch1), carbonic anhydrase (CA) activity and malondialdehyde (MDA), nitrogen (N), potassium (K) and sodium (Na) contents, and K/Na ratio] and yield attributes (number of pods/plant, seeds/pod and seed yield/plant). The salt-tolerant genotype exhibited maximum value for growth, physio-biochemical and yield attributes at 60 mg N kg 1 sand than that of salt-sensitive genotype. These results suggest that application of N may ameliorate most of the attributes and prove to be a physiological remedy to increase the tolerance against the ill effects of salt stress in Brassicas.
基金the Special Fund for Agro-Scientific Research in the Public Interest, China (200903007)the Cyrus Tang Specific Plant Genetics and Breeding Program of the Northwest A&F University, China (No. 50)
文摘The study comparatively examined the leaf photosynthetic capacities of different adzuki bean cultivars, high-yield 2000-75 and Jihong 9218, and low-yield Hongbao 1 and Wanxuan 1 from flowering to ripening. It showed that after flowering, the leaves of the cultivars gradually aged, the leaf chlorophyll (Chl.), soluble protein (SP) contents, net photosynthetic rates (Pn), transpiration rates (Tr) and stomatal conductance (G) of the cultivars tended to decline, but the leaf intercellular CO2 concentration (Ci) of the cultivars tended to rise. The leaf photosynthetic capacities of the cultivars decreased gradually from the lower to the upper nodes. The dry seed yields of the cultivars were positively correlated with their leaf Chl., SP, Pn, and Tr and Gs, and negatively associated with their leaf Ci. At the late growth stages, the high-yield cultivars maintained higher leaf Chl. contents, SP contents, Pn, Tr, and Gs than the low-yield cultivars, indicating that leaf photosynthetic capacity was one of important yield-affecting factors of adzuki bean. Therefore, it was important for a crop at the crucial stage of yield formation to maintain a high leaf chlorophyll content and a high leaf photosynthetic capacity and delay leaf aging.
基金support of the National Natural Science Foundation of China (U1203283)the National Key Technology R&D Program of China (2014BAD09B03)the Natural Science Foundation of Hebei (C2015301051)
文摘Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.
基金Supported by the National Natural Science Foundation of China (30871547)Foundation of Department of Education of Jilin Province (2006041)Scientific Research Foundation of Jilin Agricultural University (2009028)
文摘A total of nine soybean (Glycine max (L.) Merr.) cultivars were divided into three yield levels which were planted under the same environmental condition. The net photosynthetic rate was measured by LI-6400 portable photosynthesis system. The chlorophyll content and specific leaf weight were measured with regular methods. The results showed that the specific leaf weight, chlorophyll content and net photosynthetic rate of high yield varieties were higher than those of low yield varieties. The yield had a significantly positive correlation with the net photosynthetic rate. With the improvement of modem technology, the net photosynthetic rate could be measured quickly and exactly. Hence, net photosynthetic rate could be used as an effective index in the selection of high yield soybean.