Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) in...Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) increased by 30% - 40% in comparison with the cultivars with normal photosynthetic efficiency, indicating that the breeding of soybean by increasing RPE may have a bright prospect. HPE breeding can be used as the temporal monitoring in the breeding process to avoid the divergency of the predetermined goal, although HPE breeding does not shorten the breeding time. It was observed that limited C-4 pathway exists in soybean leaf and pod, suggesting that by increasing the genetic expression of some C-4 enzymes in C-3 crops through traditional or genetic engineering techniques, new breakthroughs in increasing the photosynthetic efficiency of C-3 plant may be practicable in the future.展开更多
Soil pot experiments were conducted in a greenhouse to examine the effects of different nitrogen (N) supply (low, 0.15 g N/kg; middle, 0.3 g N/kg; and high, 0.6 g N/kg dry soil) on the growth, photosynthetic chara...Soil pot experiments were conducted in a greenhouse to examine the effects of different nitrogen (N) supply (low, 0.15 g N/kg; middle, 0.3 g N/kg; and high, 0.6 g N/kg dry soil) on the growth, photosynthetic characteristics and photosynthetic nitrogen use efficiency (PNUE) of tobacco seedlings (Nicotiana tabacum L. Yunyan 87). The results showed middle and high N significantly enhanced seedling growth including plant stem and leaf dry weight comparing with low N. High N supply could lead to a dramatic increase in the photosynthetic capacity of tobacco seedlings under low N conditions. There were significant differences in leaf N content between nitrogen treatments. About a 76% increase in leafN content in plants fed by high N resulted in about 43% increase in Rubisco content and 27% in net photosynthetic rate. The non-corresponding increases in photosynthetic rate in tobacco seedlings fed by high N relative to low N resulted from Rubisco activity and/or carboxylation efficiency (CE). These results indicated that tobacco seedlings under high N application can maintain high net photosynthetic rate (Pn) but lower PNUE, will finally result in a decline in N use efficiency.展开更多
The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Pn)...The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Pn) and dark respiration rate (DR) under saturation light intensity and appropriate temperature. 2) There were a little difference in light compensation point among them. Photo flux density (PFD) were about 360μmol/m2·s when Pn tended to zero. 3) When PFD>1 900 μmol/m2·s, photoinhibition occuried a-mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.展开更多
Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golde...Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golden2-like 1a(BnGLK1a)plays an important role in regulating chloroplast development and photosynthetic efficiency.Overexpressing BnGLK1a resulted in significant increases in chlorophyll content,the number of thylakoid membrane layers and photosynthetic efficiency in Brassica napus,while knocking down BnGLK1a transcript levels through RNA interference(RNAi)had the opposite effects.A yeast two-hybrid screen revealed that BnGLK1a interacts with the abscisic acid receptor PYRABACTIN RESISTANCE 1-LIKE 1-2(BnPYL1-2)and CONSTITUTIVE PHOTOMORPHOGENIC 9 SIGNALOSOME 5A subunit(BnCSN5A),which play essential roles in regulating chloroplast development and photosynthesis.Consistent with this,BnGLK1a-RNAi lines of B.napus display hypersensitivity to the abscisic acid(ABA)response.Importantly,overexpression of BnGLK1a resulted in a 10%increase in thousand-seed weight,whereas seeds from BnGLK1a-RNAi lines were 16%lighter than wild type.We propose that BnGLK1a could be a potential target in breeding for improving rapeseed productivity.Our results not only provide insights into the mechanisms of BnGLK1a function,but also offer a potential approach for improving the productivity of Brassica species.展开更多
[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silico...[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silicon at different concentrations (0, 30, 80, 130 and 180 mg/L of sodium silicate); silicon contents were measured with Molybdenum blue spectrophotometric method in root, stem and leaf; plant height, root length and number in different treatment groups were measured with tools; chlorophyll a and b, and a/b in leaf and stem of rice in different groups were measured. [Result] Silicon contents in vegetative organs were as follows: stem〉leaf〉 root; when silicon was 80 mg/L, japonica ecotype was shortest; when silicon was 30 mg/L, root length of the rice was shortest and root number was least; when silicon was 30 mg/L, contents of chlorophyll a and b were highest and chlorophyll a/b achieved the peak when silicon was 80 mg/L. [Conclusion] Silicon at proper concen- tration would improve lodging-resistance and efficiency of photosynthesis, further enhancing yield of japonica rice.展开更多
Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant gen...Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress.展开更多
Rice grain yield is determined by three major"visible"morphological traits:grain weight,grain number per panicle,and effective tiller number,which are affected by a series of"invisible"physiologica...Rice grain yield is determined by three major"visible"morphological traits:grain weight,grain number per panicle,and effective tiller number,which are affected by a series of"invisible"physiological factors including nutrient use efficiency and photosynthetic efficiency.In the past few decades,substantial progress has been made on elucidating the molecular mechanisms underlying grain yield formation,laying a solid foundation for improving rice yield by molecular breeding.This review outlines our current understanding of the three morphological yield-determining components and summarizes major progress in decoding physiological traits such as nutrient use efficiency and photosynthetic efficiency.It also discusses the integration of current knowledge about yield formation and crop improvement strategies including genome editing with conventional and molecular breeding.展开更多
Plant growth-promoting rhizobacteria(PGPR) located in rhizobacteria soil are beneficial to plant growth and development. A PGPR strain AMCC100017 of Brevibacillus laterosporus synthesizes the plant hormone IAA in a tr...Plant growth-promoting rhizobacteria(PGPR) located in rhizobacteria soil are beneficial to plant growth and development. A PGPR strain AMCC100017 of Brevibacillus laterosporus synthesizes the plant hormone IAA in a tryptophan-dependent manner. In this study, the AMCC100017 strain was used to treat Malus robusta, an excellent natural rootstock for apple production, and assess its ability to promote growth. The fresh weight, dry weight, plant height, and lateral root growth of M. robusta were significantly increased with treatment. The presence of the AMCC100017 strain increased IAA content in M. robusta and promoted root secretion of tryptophan. Colonization of the strain in the roots allowed continuous synthesis of IAA and promoted plant growth. In addition, the photosynthetic efficiency in leaves increased after microbial treatment, and the utilization of nitrogen, zinc, iron, copper and magnesium in leaves was increased, which was conducive to photosynthesis.Interestingly, the activities of CAT and SOD, as well as the contents of ROS in plants colonized by AMCC100017 were increased compared to control plants, but the activities of POD and MDA contents were decreased. AMCC100017 strain affected the antioxidant capacity and stress resistance of plants. AMCC100017 strain increased the content of soluble protein and soluble sugar in plants, improved plant metabolic activity and stress resistance. Therefore, AMCC100017 not only increased IAA content and photosynthetic efficiency to promote M. robusta growth, but also affected plant through multiple metabolic pathways.展开更多
Photosynthesis is the fundamental basis of plant growth and development,and the improvement of photosynthetic efficiency can therefore promote increased crop yields.In this study,a comparative analysis of photosynthet...Photosynthesis is the fundamental basis of plant growth and development,and the improvement of photosynthetic efficiency can therefore promote increased crop yields.In this study,a comparative analysis of photosynthetic physiology and transcriptome was conducted between the high photosynthetic efficient variety BN207 and its parents BN64 and ZM16.The higher chlorophyll fluorescence,chlorophyll and carotenoid contents,and Lhcb1 protein accumulation in BN207 improved photosynthetic efficiency by promoting light energy absorption and conversion.Chloroplasts being distributed more closely to the cell membrane and the higher Rubisco enzyme activity of BN207 enhanced carbon assimilation,resulting in more carbohydrate accumulation in BN207.Transcriptome analysis revealed that there were several key genes mediating the high photosynthetic efficiency of BN207:Traes CS5 D02 G364100(chlorophyllase),BGI_novel_G006617(lycopeneε-cyclase),Traes CS4 A02 G034800 and Traes CS4 A02 G035100(Zeaxanthin epoxidase),Traes CS6 B02 G122500(light-harvesting complex II chlorophyll a/b binding protein 1).These genes improved the photosynthetic efficiency of BN207 mainly by reducing chlorophyll degradation,promoting carotenoid synthesis,and increasing Lhcb1 protein accumulation.These findings provide important background information for the cultivation of wheat varieties with high photosynthetic efficiency.展开更多
Transgenic Nipponbare which over-expressed a Na+/H~ antiporter gene OsNHX1 was used to compare its growth performance, water status and photosynthetic efficiency with its wild type under varying salinity regimes. Chl...Transgenic Nipponbare which over-expressed a Na+/H~ antiporter gene OsNHX1 was used to compare its growth performance, water status and photosynthetic efficiency with its wild type under varying salinity regimes. Chlorophyll content, quantum yield and photosynthetic rate were measured to assess the impact of salinity stress on photosynthetic efficiency for transgenic and wild-type Nipponbare. Effects of salinity on water status and gas exchange to both lines were studied by measuring water use efficiency, instantaneous transpiration rate and stomatal conductance. Dry shoot weight and leaf area were determined after three months of growth to assess the impacts of salinity on the growth of those two lines. Our study showed that both lines were affected by salinity stress, however, the transgenic line showed higher photosynthetic efficiency, better utilization of water, and better growth due to low transpiration rate and stomatal conductance. Reduction of photosynthetic efficiency exhibited by the wild-type Nipponbare was correlated to its poor growth under salinity stress.展开更多
Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP\|2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigate...Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP\|2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigated. The experiment confirms that dry weights and yields of Phaseolus vulgaris are limited by a drought induced decrease in leaf area, leading to less radiation interception as a source for assimilation. However, photosynthetic efficiency in Phaseolus vulgaris also appears to decrease and to contribute to these effects. Finally, an even larger decreases of economic efficiency as obtained in the second season, where stress lasted much later into the season, reveals that such a drought also limits considerably the partitioning and translocation of assimilates to the seeds of Phaseolus vulgaris. The efficiencies obtained are in line with the better literature data for other crops.展开更多
The results of the investigation on transgenic rice with maize C4-specific phosphoenolpyruvate carboxylase (pepc) gene showed that the transgenic rice plants with the maize pepc gene expressed at high level and the ma...The results of the investigation on transgenic rice with maize C4-specific phosphoenolpyruvate carboxylase (pepc) gene showed that the transgenic rice plants with the maize pepc gene expressed at high level and the maize PEPC expression was inherited in the progenies in a Mendelian manner. The transgenic plants had PEPC activity of more than 10-fold higher than untransformed plants. As compared with untransformed plants, the panicle per plant, spikelet per panicle, 1000-grain weight and grain-weight per plant for transgenic plants increased by 14.9 % , 5.7%, 1.3 % and 13.9 %, respectively. By crossing the maize pepc gene was incorporated into the parents of hybrid rice, which were the photo-sensitive genie male sterile (PGMS) lines of two-line hybrid rice such as Peiai64s, 7001s, 2302s, 2304s and 2306s-1, and the BT type of cytoplas-mic male sterile (CMS) line of three-line hybrid rice such as Shuangjiu A, and restorer lines 5129, Wanjing97 in the spring of 1998. The following progresses were made: (1) The inheritance of the high-level expression of the maize PEPC was stable in different genetic background of rice; (2) PEPC activity of hybrid was the mean of the two parents. Its saturated photosynthetic rate (Pn) rose to 50 % higher than that of the receptor parent. These results demonstrated that it is possible to increase the vigor of the rice plant by transgenic approach with maize pepc gene; (3) The activity of PEPC in leaf could be considered as the major physiological index because the correlation coefficient between PEPC activity and Pn was 0.6470* * ; (4) We have developed three rice lines with maize pepc gene; (5) The selection method of high photosynthetic efficiency rice has been established, which includes soaking seeds into solution of hygromycin phosphotransferase to germinate, tracing the pepc gene by PCR analysis, evaluating the performance of the rice plants in the field and examining PEPC activities and Pn of rice plants with maize pepc gene.展开更多
Increasing leaf photosynthesis per area(A) is of great importance to achieve yield further improvement. The aim of this study was to exploit varietal difference in A and its correlation with specific leaf weight(SL...Increasing leaf photosynthesis per area(A) is of great importance to achieve yield further improvement. The aim of this study was to exploit varietal difference in A and its correlation with specific leaf weight(SLW). Twelve rice cultivars, including 6 indica and 6 japonica varieties, were pot-grown under two N treatments, low N(LN) and sufficient N(SN). Leaf photosynthesis and related parameters were measured at tillering stage. Compared with LN treatment, A, stomatal conductance(g_s), mesophyll conductance(g_m), leaf N content(N_(area)), and chlorophyll content were significantly improved under SN treatment, while SLW and photosynthetic N use efficiency(PNUE) were generally decreased. Varietal difference in A was positively related to both g_s and g_m, but not related to N_(area). This resulted in a low PNUE in high N_(area) leaves. Varietal difference in PNUE was generally negatively related to SLW. Response of PNUE to N supply varied among different rice cultivars, and interestingly, the decrease in PNUE under SN was negatively related to the decrease in SLW. With a higher N_(area), japonica rice cultivars did not show a higher A than indica rice cultivars because of possession of high-SLW leaves. Therefore, varietal difference in A was not related to N_(area), and SLW can substantially interfere with the correlation between A and N_(area). These findings may provide useful information for rice breeders to maximize A and PNUE, rather than over reliance on N_(area) as an indicator of photosynthetic performance.展开更多
Global climate changes have increased temperatures,radiation indexes,and consequently,irregularities in rainfall in mainly tropical countries,considerably hindering plant establishment in recovering degraded areas.The...Global climate changes have increased temperatures,radiation indexes,and consequently,irregularities in rainfall in mainly tropical countries,considerably hindering plant establishment in recovering degraded areas.The objective of this study was to evaluate the growth and physiological characteristics of one species of each successional group:pioneer,secondary,and climax when subjected to different light intensities and hydrogel as a soil conditioner during rainy and dry periods.The experiment was conducted in the ecotone between Brazil’s two largest biomes,the Cerrado and the Amazon in the State of Maranh?o.The parameters consisted of three species:Guazuma ulmifolia Lam.(pioneer),Astronium fraxinifolium Schott(secondary),and Cariniana rubra Gardner ex Miers(climax).There were two light intensities:70%and 100%,and two planting conditions:with and without soil conditioner(hydrogel).Gas exchanges were higher during the rainy season;the pioneer and secondary species had greater heights and photosynthetic rates in the dry period;the climax species had the lowest gas exchange and lowest recovery as rainfall resumed.The pioneer and secondary species showed higher physiological plasticity,denoting better adaption to environments with high irradiance.Hydrogel improved the photosynthetic performance of these species in the dry season and in areas with 100%sunlight.展开更多
Selection of tree species with a high capacity to assimilate N and efficiently utilize N resources would facilitate the success of initial tree seedling establishment in infertile soils.The preference for N forms was ...Selection of tree species with a high capacity to assimilate N and efficiently utilize N resources would facilitate the success of initial tree seedling establishment in infertile soils.The preference for N forms was tested using three pine species(Pinus densata,Pinus tabuliformis and Pinus yunnanensis).Pinus densata is a natural diploid hybrid between P.tabuliformis and P.yunnanensis.Methods Seedlings of three pine species were supplied with nitrate-N,ammonium-N(at two different pH regimes)or combined ammonium and nitrate as a nitrogen source in perlite culture in a controlled environment.Important Findings Seedlings of P.densata had higher total biomass and net photosynthesis when supplied with nitrate-N and ammonium nitrate than with ammonium-N.In parental species,total biomass and net photosynthesis for P.yunnanensis seedlings was higher in ammonium-N than in nitrate-N,whereas the other parental species P.tabuliformis had the highest total biomass among species for all treatments except ammonium with CaCO_(3).Most morphological traits in P.densata seedlings were intermediate between its two parental species.However,N-use efficiency and photosynthetic N-use efficiency of P.densata significantly exceeded both parents when supplied with nitrate-N and ammonium nitrate.The results suggested that the diploid hybrid tree species P.densata has a preference for nitrate and is not well adapted to ammonium-N as a sole nitrogen source regardless of the growth medium pH.Based on changes in environmental conditions,such as predicted future temperature increases in high altitude areas associated with climate change,P.densata is likely to be increasingly competitive and have wide adaptation in high altitude regions.展开更多
Inorganic phosphorus(Pi)deficiency significantly impacts plant growth,development,and photosynthetic efficiency.This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient(Pi^(+))and P...Inorganic phosphorus(Pi)deficiency significantly impacts plant growth,development,and photosynthetic efficiency.This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient(Pi^(+))and Pi-starvation(Pi^(-))conditions in the field to assess photosynthetic phosphorus use efficiency(PPUE),defined as the ratio of A_(sat)^(Pi^(-))to A_(sat)^(Pi^(+)).A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene(ACP2)that responds strongly to phosphate availability.Overexpression and knockout of ACP2 led to a 67%increase and 32%decrease in PPUE,respectively,compared with wild type.Introduction of an elite allele A,by substituting the v5 SNP G with A,resulted in an 18%increase in PPUE in gene-edited ACP2 rice lines.The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression,resulting in an 11%increase in PPUE.Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine.In addition,serine levels increased significantly in the ACP2^(vBG)overexpression line,along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway.Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions.We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.展开更多
In order to explore the genetics of dark-induced senescence in winter wheat (Triticum aestivum L.), a quantitative trait loci (QTL) analysis was carried out in a doubled haploid population developed from a cross b...In order to explore the genetics of dark-induced senescence in winter wheat (Triticum aestivum L.), a quantitative trait loci (QTL) analysis was carried out in a doubled haploid population developed from a cross between the varieties Hanxuan 10 (HX) and Lumai 14 (LM). The senescence parameters chlorophyll content (Chl a+b, Chl a, and Chl b), original fluorescence (Fo), maximum fluorescence level (Fm), maximum photochemical efficiency (FvlFm), and ratio of variable fluorescence to original fluorescence (FvlFo) were evaluated in the second leaf of whole three-leaf seedlings subjected to 7 d of darkness. A total of 43 QTLs were identified that were associated with dark-induced senescence using composite interval mapping. These QTLs were mapped to 20 loci distributed on 11 chromosomes: 1B, 1D, 2A, 2B, 3B, 3D, 5D, 6A, 6B, 7A, and 7B. The phenotypic variation explained by each QTL ranged from 7.5% to 19.4%. Eleven loci coincided with two or more of the analyzed parameters. In addition, 14 loci co-located or were linked with previously reported QTLs regulating flag leaf senescence, tolerance to high light stress, and grain protein content (Gpc), separately.展开更多
JUJUNCAO(Cenchrus fungigraminus;2n=4x=28)is a Cenchrus grass with the highest biomass production among cultivated plants,and it can be used for mushroom cultivation,animal feed,and biofuel production.Here,we report a ...JUJUNCAO(Cenchrus fungigraminus;2n=4x=28)is a Cenchrus grass with the highest biomass production among cultivated plants,and it can be used for mushroom cultivation,animal feed,and biofuel production.Here,we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated2.7 million years ago(mya).Its genome consists of two subgenomes,and subgenome A shares high collinear synteny with pearl millet.We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO.Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes,which was a further indication of asymmetric DNA methylation.The three types of centromeric repeat in the JUJUNCAO genome(CEN137,CEN148,and CEN156)may have evolved independently within each subgenome,with some introgressions of CEN156 from the B to the A subgenome.We investigated the photosynthetic characteristics of JUJUNCAO,revealing its typical C4 Kranz anatomy and high photosynthetic efficiency.NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO,which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield.Taken together,our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies,as well as genetic improvement of Cenchrus grasses.展开更多
More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely im...More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 ℃) and N treatments (±N) were applied to 16 1 m^2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn), quantum yield of photosystem Ⅱ (ФpsⅡ), stomatal conductance (gs), and leaf water potential (ψw) of the dominant species and soil respiration (Rsoll) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased Pn, gs, ψw, and PNUE for both species, and +N treatment generally increased these variables (±HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.展开更多
Wheat grown in Mn-deficient soil has been widely observed to produce much reduced yields. Breeding for Mn-efficient wheat genotypes adapted to Mn-deficient soils would represent a long-term solution for wheat agronomy...Wheat grown in Mn-deficient soil has been widely observed to produce much reduced yields. Breeding for Mn-efficient wheat genotypes adapted to Mn-deficient soils would represent a long-term solution for wheat agronomy. To characterize the physiological basis of Mn efficiency in wheat genotypes would facilitate the breeding programs for producing Mn-efficient wheat. Using a solution culture and a soil culture system in the present study, a Mn-efficient UK wheat genotype Maris Butler and a Mn-inefficient UK wheat genotype Paragon have been compared with a Mn-efficient Australian wheat genotype C8MM in the responses to Mn deficiency in order to characterize the Mn efficiency in these wheat genotypes. Results showed that in solution culture, Marls Butler grown under Mn deficiency had 77% relative dry matter yield of control plants that were grown under Mn sufficiency, whereas CSMM and Paragon had 60% and 58% relative dry matter yield of their respective controls. Results from the soil culture demonstrated that relative dry matter yield remained high for Maris Butler and C8MM (53% and 56%, respectively), whereas the value for Paragon dropped to 33%. In terms of dry matter yield and photosynthetic efficiency, Maris Butler demonstrated Mn efficiency in both solution culture and soil culture, whereas C8MM showed Mn efficiency only in soil culture. Results also demonstrated that under Mn-depleted supply in soil, plants of C8MM had a significantly higher ability in Mn uptake, whereas plants of Marls Butler showed a higher internal Mn use efficiency in comparison with plants of Paragon. Results from the present study indicate that the ability of C8MM to accumulate higher amounts of Mn is the basis of the improved Mn efficiency of this genotype in comparison with Paragon, and in Marls Butler there is a higher internal use of Mn expressed as an improved photosynthetic efficiency in conferring its Mn efficiency. It is suggested that more than one mechanism has arisen in wheat to confer tolerance to Mn deficiency.展开更多
文摘Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) increased by 30% - 40% in comparison with the cultivars with normal photosynthetic efficiency, indicating that the breeding of soybean by increasing RPE may have a bright prospect. HPE breeding can be used as the temporal monitoring in the breeding process to avoid the divergency of the predetermined goal, although HPE breeding does not shorten the breeding time. It was observed that limited C-4 pathway exists in soybean leaf and pod, suggesting that by increasing the genetic expression of some C-4 enzymes in C-3 crops through traditional or genetic engineering techniques, new breakthroughs in increasing the photosynthetic efficiency of C-3 plant may be practicable in the future.
文摘Soil pot experiments were conducted in a greenhouse to examine the effects of different nitrogen (N) supply (low, 0.15 g N/kg; middle, 0.3 g N/kg; and high, 0.6 g N/kg dry soil) on the growth, photosynthetic characteristics and photosynthetic nitrogen use efficiency (PNUE) of tobacco seedlings (Nicotiana tabacum L. Yunyan 87). The results showed middle and high N significantly enhanced seedling growth including plant stem and leaf dry weight comparing with low N. High N supply could lead to a dramatic increase in the photosynthetic capacity of tobacco seedlings under low N conditions. There were significant differences in leaf N content between nitrogen treatments. About a 76% increase in leafN content in plants fed by high N resulted in about 43% increase in Rubisco content and 27% in net photosynthetic rate. The non-corresponding increases in photosynthetic rate in tobacco seedlings fed by high N relative to low N resulted from Rubisco activity and/or carboxylation efficiency (CE). These results indicated that tobacco seedlings under high N application can maintain high net photosynthetic rate (Pn) but lower PNUE, will finally result in a decline in N use efficiency.
基金funded by the State Key Basic Research and Development Plan(G1998010100).
文摘The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Pn) and dark respiration rate (DR) under saturation light intensity and appropriate temperature. 2) There were a little difference in light compensation point among them. Photo flux density (PFD) were about 360μmol/m2·s when Pn tended to zero. 3) When PFD>1 900 μmol/m2·s, photoinhibition occuried a-mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.
基金This work was funded by the National Natural Science Foundation of China(32172597 and 31830067)the Chongqing Talents of Exceptional Young Talents Project,China(CQYC202005097,cstc2021ycjh-bgzxm0204,and cstc2021jcyj-bshX0002)+2 种基金the China Agriculture Research System of MOF and MARA(CARS-12)the 111 Project,China(B12006)the Germplasm Creation Special Program of Southwest University,China。
文摘Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golden2-like 1a(BnGLK1a)plays an important role in regulating chloroplast development and photosynthetic efficiency.Overexpressing BnGLK1a resulted in significant increases in chlorophyll content,the number of thylakoid membrane layers and photosynthetic efficiency in Brassica napus,while knocking down BnGLK1a transcript levels through RNA interference(RNAi)had the opposite effects.A yeast two-hybrid screen revealed that BnGLK1a interacts with the abscisic acid receptor PYRABACTIN RESISTANCE 1-LIKE 1-2(BnPYL1-2)and CONSTITUTIVE PHOTOMORPHOGENIC 9 SIGNALOSOME 5A subunit(BnCSN5A),which play essential roles in regulating chloroplast development and photosynthesis.Consistent with this,BnGLK1a-RNAi lines of B.napus display hypersensitivity to the abscisic acid(ABA)response.Importantly,overexpression of BnGLK1a resulted in a 10%increase in thousand-seed weight,whereas seeds from BnGLK1a-RNAi lines were 16%lighter than wild type.We propose that BnGLK1a could be a potential target in breeding for improving rapeseed productivity.Our results not only provide insights into the mechanisms of BnGLK1a function,but also offer a potential approach for improving the productivity of Brassica species.
基金Supported by Outstanding Young and Middle-aged Talent Program of Hubei Provincal Department of Education(Q20102501)~~
文摘[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silicon at different concentrations (0, 30, 80, 130 and 180 mg/L of sodium silicate); silicon contents were measured with Molybdenum blue spectrophotometric method in root, stem and leaf; plant height, root length and number in different treatment groups were measured with tools; chlorophyll a and b, and a/b in leaf and stem of rice in different groups were measured. [Result] Silicon contents in vegetative organs were as follows: stem〉leaf〉 root; when silicon was 80 mg/L, japonica ecotype was shortest; when silicon was 30 mg/L, root length of the rice was shortest and root number was least; when silicon was 30 mg/L, contents of chlorophyll a and b were highest and chlorophyll a/b achieved the peak when silicon was 80 mg/L. [Conclusion] Silicon at proper concen- tration would improve lodging-resistance and efficiency of photosynthesis, further enhancing yield of japonica rice.
基金supported by the National Science and Technology Support Program, China (2011BAZ01732-2)the Earmarked Fund for Modern Agro-Industry Technology Research System in China (CARS-25-A-07)
文摘Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress.
基金supported by the National Natural Science Foundation of China(31901520)Top Talent Foundation of Sichuan Academy of Agricultural Sciences(2020BJRC008)。
文摘Rice grain yield is determined by three major"visible"morphological traits:grain weight,grain number per panicle,and effective tiller number,which are affected by a series of"invisible"physiological factors including nutrient use efficiency and photosynthetic efficiency.In the past few decades,substantial progress has been made on elucidating the molecular mechanisms underlying grain yield formation,laying a solid foundation for improving rice yield by molecular breeding.This review outlines our current understanding of the three morphological yield-determining components and summarizes major progress in decoding physiological traits such as nutrient use efficiency and photosynthetic efficiency.It also discusses the integration of current knowledge about yield formation and crop improvement strategies including genome editing with conventional and molecular breeding.
基金financially supported by grants from the National Key Research and Development Program of China (Grant No. 2018YFD1000100)Science and Technology Program of Yunnan Province (Grant No. 2019ZG002-1-03)+2 种基金Ministry of Agriculture of China (Grant No. CARS-27)Major Applied Agricultural Technology Innovation Projects of Shandong Province (Grant No.SD2019ZZ009)Melon and Vegetable Industry Technology Collaborative Innovation Center of Ningxia Hui Autonomous Region(Grant No. 2017DC55)。
文摘Plant growth-promoting rhizobacteria(PGPR) located in rhizobacteria soil are beneficial to plant growth and development. A PGPR strain AMCC100017 of Brevibacillus laterosporus synthesizes the plant hormone IAA in a tryptophan-dependent manner. In this study, the AMCC100017 strain was used to treat Malus robusta, an excellent natural rootstock for apple production, and assess its ability to promote growth. The fresh weight, dry weight, plant height, and lateral root growth of M. robusta were significantly increased with treatment. The presence of the AMCC100017 strain increased IAA content in M. robusta and promoted root secretion of tryptophan. Colonization of the strain in the roots allowed continuous synthesis of IAA and promoted plant growth. In addition, the photosynthetic efficiency in leaves increased after microbial treatment, and the utilization of nitrogen, zinc, iron, copper and magnesium in leaves was increased, which was conducive to photosynthesis.Interestingly, the activities of CAT and SOD, as well as the contents of ROS in plants colonized by AMCC100017 were increased compared to control plants, but the activities of POD and MDA contents were decreased. AMCC100017 strain affected the antioxidant capacity and stress resistance of plants. AMCC100017 strain increased the content of soluble protein and soluble sugar in plants, improved plant metabolic activity and stress resistance. Therefore, AMCC100017 not only increased IAA content and photosynthetic efficiency to promote M. robusta growth, but also affected plant through multiple metabolic pathways.
基金supported by the National Key Research and Development Program of China(2017YFD0300408)。
文摘Photosynthesis is the fundamental basis of plant growth and development,and the improvement of photosynthetic efficiency can therefore promote increased crop yields.In this study,a comparative analysis of photosynthetic physiology and transcriptome was conducted between the high photosynthetic efficient variety BN207 and its parents BN64 and ZM16.The higher chlorophyll fluorescence,chlorophyll and carotenoid contents,and Lhcb1 protein accumulation in BN207 improved photosynthetic efficiency by promoting light energy absorption and conversion.Chloroplasts being distributed more closely to the cell membrane and the higher Rubisco enzyme activity of BN207 enhanced carbon assimilation,resulting in more carbohydrate accumulation in BN207.Transcriptome analysis revealed that there were several key genes mediating the high photosynthetic efficiency of BN207:Traes CS5 D02 G364100(chlorophyllase),BGI_novel_G006617(lycopeneε-cyclase),Traes CS4 A02 G034800 and Traes CS4 A02 G035100(Zeaxanthin epoxidase),Traes CS6 B02 G122500(light-harvesting complex II chlorophyll a/b binding protein 1).These genes improved the photosynthetic efficiency of BN207 mainly by reducing chlorophyll degradation,promoting carotenoid synthesis,and increasing Lhcb1 protein accumulation.These findings provide important background information for the cultivation of wheat varieties with high photosynthetic efficiency.
基金funded by University Brunei Darussalam’s Graduate Research Scholarship
文摘Transgenic Nipponbare which over-expressed a Na+/H~ antiporter gene OsNHX1 was used to compare its growth performance, water status and photosynthetic efficiency with its wild type under varying salinity regimes. Chlorophyll content, quantum yield and photosynthetic rate were measured to assess the impact of salinity stress on photosynthetic efficiency for transgenic and wild-type Nipponbare. Effects of salinity on water status and gas exchange to both lines were studied by measuring water use efficiency, instantaneous transpiration rate and stomatal conductance. Dry shoot weight and leaf area were determined after three months of growth to assess the impacts of salinity on the growth of those two lines. Our study showed that both lines were affected by salinity stress, however, the transgenic line showed higher photosynthetic efficiency, better utilization of water, and better growth due to low transpiration rate and stomatal conductance. Reduction of photosynthetic efficiency exhibited by the wild-type Nipponbare was correlated to its poor growth under salinity stress.
文摘Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP\|2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigated. The experiment confirms that dry weights and yields of Phaseolus vulgaris are limited by a drought induced decrease in leaf area, leading to less radiation interception as a source for assimilation. However, photosynthetic efficiency in Phaseolus vulgaris also appears to decrease and to contribute to these effects. Finally, an even larger decreases of economic efficiency as obtained in the second season, where stress lasted much later into the season, reveals that such a drought also limits considerably the partitioning and translocation of assimilates to the seeds of Phaseolus vulgaris. The efficiencies obtained are in line with the better literature data for other crops.
文摘The results of the investigation on transgenic rice with maize C4-specific phosphoenolpyruvate carboxylase (pepc) gene showed that the transgenic rice plants with the maize pepc gene expressed at high level and the maize PEPC expression was inherited in the progenies in a Mendelian manner. The transgenic plants had PEPC activity of more than 10-fold higher than untransformed plants. As compared with untransformed plants, the panicle per plant, spikelet per panicle, 1000-grain weight and grain-weight per plant for transgenic plants increased by 14.9 % , 5.7%, 1.3 % and 13.9 %, respectively. By crossing the maize pepc gene was incorporated into the parents of hybrid rice, which were the photo-sensitive genie male sterile (PGMS) lines of two-line hybrid rice such as Peiai64s, 7001s, 2302s, 2304s and 2306s-1, and the BT type of cytoplas-mic male sterile (CMS) line of three-line hybrid rice such as Shuangjiu A, and restorer lines 5129, Wanjing97 in the spring of 1998. The following progresses were made: (1) The inheritance of the high-level expression of the maize PEPC was stable in different genetic background of rice; (2) PEPC activity of hybrid was the mean of the two parents. Its saturated photosynthetic rate (Pn) rose to 50 % higher than that of the receptor parent. These results demonstrated that it is possible to increase the vigor of the rice plant by transgenic approach with maize pepc gene; (3) The activity of PEPC in leaf could be considered as the major physiological index because the correlation coefficient between PEPC activity and Pn was 0.6470* * ; (4) We have developed three rice lines with maize pepc gene; (5) The selection method of high photosynthetic efficiency rice has been established, which includes soaking seeds into solution of hygromycin phosphotransferase to germinate, tracing the pepc gene by PCR analysis, evaluating the performance of the rice plants in the field and examining PEPC activities and Pn of rice plants with maize pepc gene.
基金supported by the National Natural Science Foundation of China(31301840)the National Excellent Doctoral Dissertation of China(201465)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT1247)the Natural Science Foundation of Hubei Province,China(2013CFB201)the Fundamental Research Funds for the Central Universities,China(2013PY107)
文摘Increasing leaf photosynthesis per area(A) is of great importance to achieve yield further improvement. The aim of this study was to exploit varietal difference in A and its correlation with specific leaf weight(SLW). Twelve rice cultivars, including 6 indica and 6 japonica varieties, were pot-grown under two N treatments, low N(LN) and sufficient N(SN). Leaf photosynthesis and related parameters were measured at tillering stage. Compared with LN treatment, A, stomatal conductance(g_s), mesophyll conductance(g_m), leaf N content(N_(area)), and chlorophyll content were significantly improved under SN treatment, while SLW and photosynthetic N use efficiency(PNUE) were generally decreased. Varietal difference in A was positively related to both g_s and g_m, but not related to N_(area). This resulted in a low PNUE in high N_(area) leaves. Varietal difference in PNUE was generally negatively related to SLW. Response of PNUE to N supply varied among different rice cultivars, and interestingly, the decrease in PNUE under SN was negatively related to the decrease in SLW. With a higher N_(area), japonica rice cultivars did not show a higher A than indica rice cultivars because of possession of high-SLW leaves. Therefore, varietal difference in A was not related to N_(area), and SLW can substantially interfere with the correlation between A and N_(area). These findings may provide useful information for rice breeders to maximize A and PNUE, rather than over reliance on N_(area) as an indicator of photosynthetic performance.
文摘Global climate changes have increased temperatures,radiation indexes,and consequently,irregularities in rainfall in mainly tropical countries,considerably hindering plant establishment in recovering degraded areas.The objective of this study was to evaluate the growth and physiological characteristics of one species of each successional group:pioneer,secondary,and climax when subjected to different light intensities and hydrogel as a soil conditioner during rainy and dry periods.The experiment was conducted in the ecotone between Brazil’s two largest biomes,the Cerrado and the Amazon in the State of Maranh?o.The parameters consisted of three species:Guazuma ulmifolia Lam.(pioneer),Astronium fraxinifolium Schott(secondary),and Cariniana rubra Gardner ex Miers(climax).There were two light intensities:70%and 100%,and two planting conditions:with and without soil conditioner(hydrogel).Gas exchanges were higher during the rainy season;the pioneer and secondary species had greater heights and photosynthetic rates in the dry period;the climax species had the lowest gas exchange and lowest recovery as rainfall resumed.The pioneer and secondary species showed higher physiological plasticity,denoting better adaption to environments with high irradiance.Hydrogel improved the photosynthetic performance of these species in the dry season and in areas with 100%sunlight.
基金This study has been supported by National Natural Science Foundation of China(grant no:30671666)University Key Teacher funds from the Ministry of Education,People’s Republic of China.
文摘Selection of tree species with a high capacity to assimilate N and efficiently utilize N resources would facilitate the success of initial tree seedling establishment in infertile soils.The preference for N forms was tested using three pine species(Pinus densata,Pinus tabuliformis and Pinus yunnanensis).Pinus densata is a natural diploid hybrid between P.tabuliformis and P.yunnanensis.Methods Seedlings of three pine species were supplied with nitrate-N,ammonium-N(at two different pH regimes)or combined ammonium and nitrate as a nitrogen source in perlite culture in a controlled environment.Important Findings Seedlings of P.densata had higher total biomass and net photosynthesis when supplied with nitrate-N and ammonium nitrate than with ammonium-N.In parental species,total biomass and net photosynthesis for P.yunnanensis seedlings was higher in ammonium-N than in nitrate-N,whereas the other parental species P.tabuliformis had the highest total biomass among species for all treatments except ammonium with CaCO_(3).Most morphological traits in P.densata seedlings were intermediate between its two parental species.However,N-use efficiency and photosynthetic N-use efficiency of P.densata significantly exceeded both parents when supplied with nitrate-N and ammonium nitrate.The results suggested that the diploid hybrid tree species P.densata has a preference for nitrate and is not well adapted to ammonium-N as a sole nitrogen source regardless of the growth medium pH.Based on changes in environmental conditions,such as predicted future temperature increases in high altitude areas associated with climate change,P.densata is likely to be increasingly competitive and have wide adaptation in high altitude regions.
基金supported by the National Natural Science Foundation of China(32170245,32260447)Natural Science Foundation of Zhejiang Province(LQ20C130003)+4 种基金Sanya Yazhou Bay Science and Technology City(SCKJ-JYRC-2022-04)Scientific Research Fund of Zhejiang Provincial Education Department(YZ0Z145972)Huzhou Public Welfare Application Research Project(2021GZ26)National Training Programs of Innovation and Entrepreneurship for Undergraduates(2022hzxy019)Guangzhou Science and Technology Planning Project(202201010790).
文摘Inorganic phosphorus(Pi)deficiency significantly impacts plant growth,development,and photosynthetic efficiency.This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient(Pi^(+))and Pi-starvation(Pi^(-))conditions in the field to assess photosynthetic phosphorus use efficiency(PPUE),defined as the ratio of A_(sat)^(Pi^(-))to A_(sat)^(Pi^(+)).A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene(ACP2)that responds strongly to phosphate availability.Overexpression and knockout of ACP2 led to a 67%increase and 32%decrease in PPUE,respectively,compared with wild type.Introduction of an elite allele A,by substituting the v5 SNP G with A,resulted in an 18%increase in PPUE in gene-edited ACP2 rice lines.The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression,resulting in an 11%increase in PPUE.Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine.In addition,serine levels increased significantly in the ACP2^(vBG)overexpression line,along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway.Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions.We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.
基金supported by the National Basic Research Program of China (2009CB118506 and 2009CB118300)the National Natural Science Foundation of China (30800683)the Knowledge Innovation Program Key Project from the Chinese Academy of Sciences (KSCX1-YW-03 and KSCX2-EW-N-02)
文摘In order to explore the genetics of dark-induced senescence in winter wheat (Triticum aestivum L.), a quantitative trait loci (QTL) analysis was carried out in a doubled haploid population developed from a cross between the varieties Hanxuan 10 (HX) and Lumai 14 (LM). The senescence parameters chlorophyll content (Chl a+b, Chl a, and Chl b), original fluorescence (Fo), maximum fluorescence level (Fm), maximum photochemical efficiency (FvlFm), and ratio of variable fluorescence to original fluorescence (FvlFo) were evaluated in the second leaf of whole three-leaf seedlings subjected to 7 d of darkness. A total of 43 QTLs were identified that were associated with dark-induced senescence using composite interval mapping. These QTLs were mapped to 20 loci distributed on 11 chromosomes: 1B, 1D, 2A, 2B, 3B, 3D, 5D, 6A, 6B, 7A, and 7B. The phenotypic variation explained by each QTL ranged from 7.5% to 19.4%. Eleven loci coincided with two or more of the analyzed parameters. In addition, 14 loci co-located or were linked with previously reported QTLs regulating flag leaf senescence, tolerance to high light stress, and grain protein content (Gpc), separately.
基金supported by grants from the Major Special Project of Fujian Province(2021NZ029009)the Natural Science foundation of Fujian Province(2019J01665).
文摘JUJUNCAO(Cenchrus fungigraminus;2n=4x=28)is a Cenchrus grass with the highest biomass production among cultivated plants,and it can be used for mushroom cultivation,animal feed,and biofuel production.Here,we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated2.7 million years ago(mya).Its genome consists of two subgenomes,and subgenome A shares high collinear synteny with pearl millet.We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO.Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes,which was a further indication of asymmetric DNA methylation.The three types of centromeric repeat in the JUJUNCAO genome(CEN137,CEN148,and CEN156)may have evolved independently within each subgenome,with some introgressions of CEN156 from the B to the A subgenome.We investigated the photosynthetic characteristics of JUJUNCAO,revealing its typical C4 Kranz anatomy and high photosynthetic efficiency.NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO,which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield.Taken together,our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies,as well as genetic improvement of Cenchrus grasses.
基金Supported by a Grant from the National Science Foundation to S. A.Heckathorn and E. W. Hamilton.
文摘More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 ℃) and N treatments (±N) were applied to 16 1 m^2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn), quantum yield of photosystem Ⅱ (ФpsⅡ), stomatal conductance (gs), and leaf water potential (ψw) of the dominant species and soil respiration (Rsoll) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased Pn, gs, ψw, and PNUE for both species, and +N treatment generally increased these variables (±HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.
文摘Wheat grown in Mn-deficient soil has been widely observed to produce much reduced yields. Breeding for Mn-efficient wheat genotypes adapted to Mn-deficient soils would represent a long-term solution for wheat agronomy. To characterize the physiological basis of Mn efficiency in wheat genotypes would facilitate the breeding programs for producing Mn-efficient wheat. Using a solution culture and a soil culture system in the present study, a Mn-efficient UK wheat genotype Maris Butler and a Mn-inefficient UK wheat genotype Paragon have been compared with a Mn-efficient Australian wheat genotype C8MM in the responses to Mn deficiency in order to characterize the Mn efficiency in these wheat genotypes. Results showed that in solution culture, Marls Butler grown under Mn deficiency had 77% relative dry matter yield of control plants that were grown under Mn sufficiency, whereas CSMM and Paragon had 60% and 58% relative dry matter yield of their respective controls. Results from the soil culture demonstrated that relative dry matter yield remained high for Maris Butler and C8MM (53% and 56%, respectively), whereas the value for Paragon dropped to 33%. In terms of dry matter yield and photosynthetic efficiency, Maris Butler demonstrated Mn efficiency in both solution culture and soil culture, whereas C8MM showed Mn efficiency only in soil culture. Results also demonstrated that under Mn-depleted supply in soil, plants of C8MM had a significantly higher ability in Mn uptake, whereas plants of Marls Butler showed a higher internal Mn use efficiency in comparison with plants of Paragon. Results from the present study indicate that the ability of C8MM to accumulate higher amounts of Mn is the basis of the improved Mn efficiency of this genotype in comparison with Paragon, and in Marls Butler there is a higher internal use of Mn expressed as an improved photosynthetic efficiency in conferring its Mn efficiency. It is suggested that more than one mechanism has arisen in wheat to confer tolerance to Mn deficiency.