Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem...Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X_100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X_100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.展开更多
The protecting effect of histidine on the photodamage of pigments and proteins of the isolated PSⅠ particles from the chloroplast of Spinacia oleracea L. during the strong illumination (2 300 μmol·m -2 ...The protecting effect of histidine on the photodamage of pigments and proteins of the isolated PSⅠ particles from the chloroplast of Spinacia oleracea L. during the strong illumination (2 300 μmol·m -2 ·s -1 ) was studied by spectroscopy and SDS_PAGE. The absorbance of PSⅠ particles decreased during the strong illumination treatment, but the decrease would be slowed down in the presence of externally added histidine after 30 min illumination. The decrease of CD (circular dichroism) signal intensities of PSⅠ particles also was slowed down by the added histidine after about 10 min illumination. The retarded protecting effect of the added histidine on the photobleaching of pigments of PSⅠ complexes implied that the mechanisms of photoinhibition of isolated PSⅠ complexes are different from early stage to later stage during the strong illumination treatment. In addition, the added histidine suppressed the decrease of 77 K fluorescence yield of PSⅠ particles during the illumination. SDS_PAGE showed that the added histidine not only protected the reaction center proteins of PSⅠ particles, but also protected other subunits of PSⅠ particles from degradation.展开更多
文摘Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X_100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X_100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.
文摘The protecting effect of histidine on the photodamage of pigments and proteins of the isolated PSⅠ particles from the chloroplast of Spinacia oleracea L. during the strong illumination (2 300 μmol·m -2 ·s -1 ) was studied by spectroscopy and SDS_PAGE. The absorbance of PSⅠ particles decreased during the strong illumination treatment, but the decrease would be slowed down in the presence of externally added histidine after 30 min illumination. The decrease of CD (circular dichroism) signal intensities of PSⅠ particles also was slowed down by the added histidine after about 10 min illumination. The retarded protecting effect of the added histidine on the photobleaching of pigments of PSⅠ complexes implied that the mechanisms of photoinhibition of isolated PSⅠ complexes are different from early stage to later stage during the strong illumination treatment. In addition, the added histidine suppressed the decrease of 77 K fluorescence yield of PSⅠ particles during the illumination. SDS_PAGE showed that the added histidine not only protected the reaction center proteins of PSⅠ particles, but also protected other subunits of PSⅠ particles from degradation.
基金supported by grants from The National Natural Science Foundation of China(21276280,21473256,21176257)Innovation Project of China University of Petroleum(YCXJ 2016042)~~