期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Modeling Photovoltaic Performances of BTBPD-PC61BM System via Density Functional Theory Calculations
1
作者 赵蔡斌 唐志华 +3 位作者 郭小华 葛红光 马剑琪 王文亮 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第3期268-276,I0001,共10页
Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically... Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically investigated by means of density functional theory calculations coupled with the Marcus charge transfer model in order to seek novel photovoltaic systems. Moreover, the hole-transfer properties of BTBPD thin-film were also studied by an amorphous cell with 100 BTBPD molecules. Results revealed that the BTBPD- PC61BM system possessed a middle-sized open-circuit voltage of 0.70 V, large short-circuit current density of 16.874 mA/cm2, large fill factor of 0.846, and high power conversion effi- ciency of 10%. With the Marcus model, the charge-dissociation rate constant was predicted to be as fast as 3.079×10^13 s^-1 in the BTBPD-PC61BM interface, which was as 3-5 orders of magnitude large as the decay (radiative and non-radiative) rate constant (108-10^10 s^-1), indicating very high charge-dissociation efficiency (-100%) in the BTBPD-PC61BM system. Furthermore, by the molecular dynamics simulation, the hole mobility for BTBPD thin-film was predicted to be as high as 3.970× 10^-3 cm^2V^-1s^-1, which can be attributed to its tight packing in solid state. 展开更多
关键词 BTBPD PC61BM photovoltaie performances Density functional theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部