To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unkno...Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.展开更多
[Objectives] To investigate the systematic evaluation of pharmacognostic identification of Polygonum capitatum . [Methods] 10 batches of P. capitatum cultivated in Guizhou were chosen for plant samples. Macroscopical ...[Objectives] To investigate the systematic evaluation of pharmacognostic identification of Polygonum capitatum . [Methods] 10 batches of P. capitatum cultivated in Guizhou were chosen for plant samples. Macroscopical identification was conducted on plant roots, stems, leaves, flowers and fruits. The P. capitatum powder was processed for physical and chemical distinction by FeCl 3 chromogenic reaction, hydrochloric acid magnesium powder reaction, AlCl 3 color development reaction and thin-layer chromatography.Microscope identification was carried out on the powder. Plant genome DNeasy Plant Kit was adopted for DNA molecular marker identification. [Results] The results showed that the stem of P. capitatum was tufted, the leaves were oval, 2 to 5 cm long, and 1 to 2 cm wide;the leaf apex was acute and cuneate at the base, the inflorescence was capitate, paired or solitary;the raceme was erect and nearly spherical, and the perianth was light red. Furthermore, for the chromogenic reaction of FeCl 3 ethanol extract of P. capitatum , appeared blue and turned to dark blue after long time storing at room temperature. For the reaction of hydrochloric acid magnesium powder, the alcohol extract of P. capitatum , exhibited deep red. In the color reaction of AlCl 3, the alcohol extract revealed yellow fluorescence under 360 nm UV lamp. Microscope identification of the powder displayed pollen grains, crystal sheath fibers, cellulose, vessels, starch grains, cork cells, and other characteristic fragments. In addition, DNA barcoding electrophoresis results showed that P. capitatum showed a clear and bright single band near 500 bp, and further sequencing results showed that the sequence differences were mainly concentrated in ITS1 and ITS2 region. [Conclusions] Systematic evaluation for the identification of P. capitatum is established, which combines with macroscopic identification, physicochemical identification, powder microscope identification, and DNA molecular identification. Finally, the original medicinal material is identified as P. capitatum Buch.-Ham. ex D. Don.展开更多
Cotton(Gossypium spp.) is the leading fiber crop,and an important source of the important edible oil and protein meals in the world.Complex genetics and strong environmental effects hinder
[Objective] The paper was to isolate and identify probiotics in the intestine of laying hens. [Method] The intestinal probiotics in laying hens at peak period were isolated using conventional separation methods; the p...[Objective] The paper was to isolate and identify probiotics in the intestine of laying hens. [Method] The intestinal probiotics in laying hens at peak period were isolated using conventional separation methods; the physical and chemical properties of target strains and in vitro antibacterial effects were measured. Moreover, the safety test of chicks was conducted. [Result] Four strains of lactobacillus were isolated from the jejunum of laying hens, including Lactobacillus plantarum, Bacillus acidophilus, L. delbrueckii subsp. Delbrueckii and L. delbrueckii subsp. Lactis, and their inhibition zone diameters were 18.30, 16.07, 11.45, 17.26 mm, respectively. One strain of Lactobacillus, L. brevis, was isolated from the cecum, with the inhibition zone diameter of 10.26 mm. Three strains of bacillus were isolated from the cecum, including Bacillus subtilis, B. cereus and B. licheniformis, and their inhibition zone diameters were 9.25, 8.46 and 8.37 mm, respectively. Daily drinking 2 billion units of viable bacteria was the safe dosage for chicks. [Conclusion] Eight strains of probiotics had certain inhibitory effect on Escherichia coli O;, and had no toxic side effects to chicks. Lactobacillus had strong antibacterial effect on E. coli O;, while the antibacterial effect of bacillus was relatively weak.展开更多
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175157,U124208)
文摘Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.
基金Supported by Guizhou Provincial Science and Technology Project[ZK(2022)-362](2022)4028+5 种基金ZK(2021)-554ZK(2023)-378]Science Foundation of Guizhou Health Commission(gzwkj2021-449)Innovation and Entrepreneurship Training Program for Undergraduates from China(202210660131)Science Foundation of Guizhou Education Technology(2022-064)Rural Economic Revitalization Research Project of Guizhou Medical University(GZYKDX-2022-002).
文摘[Objectives] To investigate the systematic evaluation of pharmacognostic identification of Polygonum capitatum . [Methods] 10 batches of P. capitatum cultivated in Guizhou were chosen for plant samples. Macroscopical identification was conducted on plant roots, stems, leaves, flowers and fruits. The P. capitatum powder was processed for physical and chemical distinction by FeCl 3 chromogenic reaction, hydrochloric acid magnesium powder reaction, AlCl 3 color development reaction and thin-layer chromatography.Microscope identification was carried out on the powder. Plant genome DNeasy Plant Kit was adopted for DNA molecular marker identification. [Results] The results showed that the stem of P. capitatum was tufted, the leaves were oval, 2 to 5 cm long, and 1 to 2 cm wide;the leaf apex was acute and cuneate at the base, the inflorescence was capitate, paired or solitary;the raceme was erect and nearly spherical, and the perianth was light red. Furthermore, for the chromogenic reaction of FeCl 3 ethanol extract of P. capitatum , appeared blue and turned to dark blue after long time storing at room temperature. For the reaction of hydrochloric acid magnesium powder, the alcohol extract of P. capitatum , exhibited deep red. In the color reaction of AlCl 3, the alcohol extract revealed yellow fluorescence under 360 nm UV lamp. Microscope identification of the powder displayed pollen grains, crystal sheath fibers, cellulose, vessels, starch grains, cork cells, and other characteristic fragments. In addition, DNA barcoding electrophoresis results showed that P. capitatum showed a clear and bright single band near 500 bp, and further sequencing results showed that the sequence differences were mainly concentrated in ITS1 and ITS2 region. [Conclusions] Systematic evaluation for the identification of P. capitatum is established, which combines with macroscopic identification, physicochemical identification, powder microscope identification, and DNA molecular identification. Finally, the original medicinal material is identified as P. capitatum Buch.-Ham. ex D. Don.
文摘Cotton(Gossypium spp.) is the leading fiber crop,and an important source of the important edible oil and protein meals in the world.Complex genetics and strong environmental effects hinder
文摘[Objective] The paper was to isolate and identify probiotics in the intestine of laying hens. [Method] The intestinal probiotics in laying hens at peak period were isolated using conventional separation methods; the physical and chemical properties of target strains and in vitro antibacterial effects were measured. Moreover, the safety test of chicks was conducted. [Result] Four strains of lactobacillus were isolated from the jejunum of laying hens, including Lactobacillus plantarum, Bacillus acidophilus, L. delbrueckii subsp. Delbrueckii and L. delbrueckii subsp. Lactis, and their inhibition zone diameters were 18.30, 16.07, 11.45, 17.26 mm, respectively. One strain of Lactobacillus, L. brevis, was isolated from the cecum, with the inhibition zone diameter of 10.26 mm. Three strains of bacillus were isolated from the cecum, including Bacillus subtilis, B. cereus and B. licheniformis, and their inhibition zone diameters were 9.25, 8.46 and 8.37 mm, respectively. Daily drinking 2 billion units of viable bacteria was the safe dosage for chicks. [Conclusion] Eight strains of probiotics had certain inhibitory effect on Escherichia coli O;, and had no toxic side effects to chicks. Lactobacillus had strong antibacterial effect on E. coli O;, while the antibacterial effect of bacillus was relatively weak.