期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
1
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability physical model test Surface 3D deformation Stability identification
下载PDF
Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes
2
作者 Qinghai Ma Guangsheng Liu +1 位作者 Xiaocong Yang Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1490-1501,共12页
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi... Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation. 展开更多
关键词 tailings backfill CONSOLIDATION slurry drainage cement content physical model test
下载PDF
Hydrodynamic Performance of a Newly-Designed Pelagic and Demersal Trawls Using Physical Modeling and Analytical Methods for Cameroonian Industrial Fisheries
3
作者 Tcham Leopold Vanlie Maurice Kontchou +2 位作者 Nyatchouba Nsangue Bruno Thierry Abdou Njifenjou Njomoue Pandong Achille 《Open Journal of Marine Science》 2023年第3期41-65,共25页
This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were inve... This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were investigated using physical modelling method and analytical method based on the predicted equations. In a flume tank, a series of physical model tests based on Tauti’s law were performed to investigate the hydrodynamic and geometrical performances of both trawls and to assess the applicability of the analytical methods based on predicted equations. The results showed that in model scale, the working towing speed and door spread for the pelagic trawl were 3.5 knots and 1.85 m, respectively, and for the bottom trawl net they were 4.0 knots and 1.8 m. At that speed and door spread, the drag force, net opening height, and wing-end spread of the pelagic model trawl were 36.73 N, 0.89 m, and 0.86 m, respectively, and the swept area was 0.76 m<sup>2</sup>. Bottom trawl speed and door spread were 30.43 N, 0.38 m, and 0.45 m, respectively, and the swept area was 0.25 m<sup>2</sup>. The maximum difference between the experimental and analytical results of hydrodynamic performances was less than 56.22% and 41.45%, respectively, for pelagic and bottom trawls, the results of the geometrical performances obtained using predicted equations were close to the experimental results in the flume tank with a maximum relative error less than 12.85%. The newly developed pelagic and bottom trawls had advanced engineering performance for high catch efficiency and selectivity and could be used in commercial fishing operations in Cameroonian waters. 展开更多
关键词 Cameroonian Waters Pelagic Trawl Bottom Trawl Engineering Performances physical model Test Analytical Methods Formatting
下载PDF
LAGFD-WAM numerical wave model-Ⅰ. Basic physical model 被引量:46
4
作者 Yuan Yeli, Hua Feng, Pan Zengdi Sun Letao First Institute of Oceanography, State Oceanic Administration, Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1991年第4期483-488,共6页
The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equati... The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions. 展开更多
关键词 WAVE LAGFD-WAM numerical wave model Basic physical model WAM
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:10
5
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Quantitative Damage Detection for Planetary Gear Sets Based on Physical Models 被引量:5
6
作者 CHENG Zhe HU Niaoqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期190-196,共7页
Planetary gear set is the critical component in helicopter transmission train, and an important problem in condition monitoring and health management of planetary gear set is quantitative damage detection. In order to... Planetary gear set is the critical component in helicopter transmission train, and an important problem in condition monitoring and health management of planetary gear set is quantitative damage detection. In order to resolve this problem, an approach based on physical models is presented to detect damage quantitatively in planetary gear set. A particular emphasis is put on a feature generation and selection method, which is used for sun gear tooth breakage damage detection quantitatively in planetary gear box of helicopter transmission system. In this feature generation procedure, the pure torsional dynamical models of 2K-H planetary gear set is established for healthy case and sun gear tooth-breakage case. Then, a feature based on the spectrum of simulation signals of the dynamical models is generated. Aiming at selecting the best feature suitable for quantitative damage detection, a two-sample Z-test procedure is used to analyze the performance of features on damage evolution tracing. A feature named SR, which had better performance in tracking damage, is proposed to detect damage in planetary gear set. Meanwhile, the sun gear tooth-chipped seeded experiments with different severity are designed to validate the method above, and then the test vibration signal is picked up and used for damage detection. With the results of several experiments for quantitative damage detection, the feasibility and the effect of this approach are verified. The proposed method can supply an effective tool for degradation state identification in condition monitoring and health management of helicopter transmission system. 展开更多
关键词 planetary gear sets physical model quantitative detection feature extraction feature selection
下载PDF
Physical Modeling of Fold-and-Thrust Belt Evolution and Triangle Zone Development:Dabashan Foreland Belt(Northeast Sichuan basin,China) as an Example 被引量:3
7
作者 WANG Ruirui ZHANG Yueqiao XIE Guoai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期59-72,共14页
Triangle zones, generally found in foreland fold-and-thrust belts, serve as favorable objects of petroleum exploration. Taking the Dabashan foreland belt as an example, we studied the formation and development of tria... Triangle zones, generally found in foreland fold-and-thrust belts, serve as favorable objects of petroleum exploration. Taking the Dabashan foreland belt as an example, we studied the formation and development of triangle zones, and investigated the effect of d^collements and the mechanical contrast of lithology by employing the method of physical modeling. Four experimental models were conducted in the work. The results showed that 'sand wedges' grew episodically, recorded by deformational length, height and slope angle. The height versus shortening rate presented an S-shape curve, and uplifting occurred successively in the direction of the foreland belt. During the formation of the triangle zone, layer-parallel shortening took place at the outset; deformation decoupling then occurred between the upper and lower brittle layers, divided by a middle-embedded silicone polymers layer. The upper brittle layers deformed mainly by folding, while the lower sand layers by thrusting. As shortening continued, the geometry of a triangle zone was altered. We consider that the triangle zone in the Dabashan foreland belt was modified from an early one based on available seismic profiles and the experimental results. In addition, dccollements and mechanical contrast impose significant influence on structural development, which can directly give rise to structural discrepancies. More d^collements and obvious mechanical contrast between brittle layers can promote the coupling between the upper and lower brittle layers. Basal d^collement controls the whole deformation and decreases the slope angle of the wedge, while roof d^collement determines whether a triangle zone can be formed. 展开更多
关键词 physical modeling Dabashan fold-and-thrust belt triangle zone DECOLLEMENT mechanicalcontrast of lithology
下载PDF
A physical model study of shale seismic responses and anisotropic inversion 被引量:3
8
作者 Pin-Bo Ding Fei Gong +1 位作者 Feng Zhang Xiang-Yang Li 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1059-1068,共10页
The seismic responses of the shale properties are critical for shale gas reservoir evaluation and production.It has been widely reported that the clay minerals have substantial influences on the seismic wave anisotrop... The seismic responses of the shale properties are critical for shale gas reservoir evaluation and production.It has been widely reported that the clay minerals have substantial influences on the seismic wave anisotropy and brittleness.Hence,knowing the seismic responses of the clay-rich shales and estimation of shale elastic properties are significant for the shale gas industry.A physical model containing two groups of shale blocks as the target formations is constructed in laboratory.The group S contains six shale blocks with different clay contents,and the group N contains six shale blocks with different porosity.The acquired 2D seismic data is used to analyze the seismic responses of two corresponding seismic lines.An anisotropic three-term inversion method is applied to one of the seismic inline to estimate the elastic properties the target shale blocks.The inversed attributes can be used to reveal the effects of shale clay contents.This study shows the substantial significance of using a physical model to observe the seismic responses of shale properties.The inversion results indicate that the anisotropic three-term inversion method could provide accurate results of elastic properties as well as the P-wave anisotropy parameter for shale formations. 展开更多
关键词 physical model SHALE CLAY AVO ANISOTROPY
下载PDF
Influence of Spur Dike on Hydrodynamic Exchange Between Channel and Shoal of Generalization Estuary in Physical Model Test 被引量:3
9
作者 JIAO Zeng-xiang Dou Xi-ping +2 位作者 ZHENG Jin-hai ZHANG Xin-zhou GAO Xiang-yu 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期624-630,共7页
Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establis... Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases. 展开更多
关键词 spur dike HYDRODYNAMICS flow velocity channel shoal exchange physical model
下载PDF
PHYSICAL MODELLING OF ISOTHERMAL DIE FORGING PROCESS OF Ti-ALLOY STRUCTURAL AIR-FRAME PART WITH ETYPE CROSS-SECTION AND VARYING THICKNESS RIB 被引量:4
10
作者 Z. K. Yao H. Z. Cuo +1 位作者 M. Wang F. Lan and P. F. Feng (Northwestern Polytechnical University, Xi’ an 710072, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期401-405,共5页
Isothermal flashless die forging process of Ti - alloy structural air - frame part with varying thickness rib has been modelled in this paper.The results of present study show that a upside - down trapezoid rib would... Isothermal flashless die forging process of Ti - alloy structural air - frame part with varying thickness rib has been modelled in this paper.The results of present study show that a upside - down trapezoid rib would be formed and buckling would occure as blank is reduced,if the thickness of billet is maller than or equal to the thickness of rib. During modelling process of structural air frame part with E type cross - section rib, the saddle or lap would be formed finally at the middle of transverse rib between ribs with increase in deformation.If metal is allowed to flow out at confluence of longitudinal and transverse rib, the lop defect would be eliminated,, but a pipe cavity is obvious on corresponding loca- tion of blank. of defect formation depends on distance of metal flow ,friction,temperature homoge- neity of the blank and complexity of the part. 展开更多
关键词 Ti alloy air-frame part physical modelling
下载PDF
Characteristics of evolution of mining-induced stress field in the longwall panel:insights from physical modeling 被引量:3
11
作者 Jinfu Lou Fuqiang Gao +4 位作者 Jinghe Yang Yanfang Ren Jianzhong Li Xiaoqing Wang Lei Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期938-955,共18页
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre... The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis. 展开更多
关键词 Longwall mining Mining-induced stress field physical modeling Principal stress trajectory Strain brick
下载PDF
MATHEMATICAL AND PHYSICAL MODELING OF INTERFACIALPHENOMENA IN CONTINOUS CASTING MOULD WITH ARGONINJECTION THROUGH SUBMERGED ENTRV NOZZLE 被引量:2
12
作者 H. Lei, M. Y. Zhu and J.C. He (School of Materials and Metallurgy, Northeastern University, Shenyang 110006, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1079-1086,共8页
The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhan... The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhances the meniscus oscillation, thus increases the probability of slag entrapment, and the critical argon blowing flow rate, which will give rise to slag entrapment, is around 10l/min. The trajectory of bubble is affected by the bubble diameter and the molten steel flow, and the bubble diameter is dominant. The bubble with diameter 1.4mm floats fastest with 0.47m/s terminal velocity. 展开更多
关键词 continuous casting mould argon injection meniscus oscillation slag entrapment mathematical and physical model
下载PDF
Ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models 被引量:2
13
作者 邵志华 乔学光 +1 位作者 陈凤仪 荣强周 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期128-136,共9页
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil... An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs. 展开更多
关键词 fiber-optic sensor Fabry-Perot interferometer seismic physical model
下载PDF
A physical model study of surrounding rock failure near a fault under the influence of footwall coal mining 被引量:1
14
作者 Shukun Zhang Lu Lu +1 位作者 Ziming Wang Shuda Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期626-640,共15页
A study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjac... A study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjacent fault roadways.This research is based on the 15101 mining face in the Baiyangling Coal Mine,Shanxi,China,and uses simulation tests similar to digital speckle test technology to analyse the displacement,strain and vertical stress fields of surrounding rocks near faults to determine the influence of the coal pillar width.The results are as follows.The surrounding rock of the roadway roof fails to form a balance hinge for the massive rock mass.The vertical displacement,vertical strain and other deformation of the surrounding rock near the fault increase steeply as the coal pillar width decreases.The steep increase in deformation corresponds to a coal pillar width of 10 m.When the coal pillar width is 7.5 m,the pressure on the surrounding rock near the footwall of the fault suddenly increases,while the pressure on the hanging wall near the fault increases by only 0.35 MPa.The stress of the rock mass of the hanging wall is not completely shielded by the fault,and part of the load disturbance is still transmitted to the hanging wall via friction.The width of the fault coal pillars at the 15101 working face is determined to be 7.5 m,and the monitoring data verify the rationality of the fault coal pillars. 展开更多
关键词 FAULT Mining roadway Surrounding rock Coal pillar physical model
下载PDF
Physical Modeling of Localized Scour for the Yangtze Estuary Waterway Improvement Project,Phase Ⅰ 被引量:1
15
作者 贾建军 卢无疆 钱亚东 《China Ocean Engineering》 SCIE EI 2000年第4期473-484,共12页
In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I , an undistort-ed physical model o... In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I , an undistort-ed physical model on a geometric scale of 1:250 is built in this study, covering two groins and their adacent estuarine areas. By use of rinsing fix-bed model as well as localized mobile-bed model, the experiment is undertaken under bi-directional steady flow. According to the experimental results, waterway dredging leads to the increase in steram velocity, the increase being larger during the ebb than during the flood. Construction of the upstream groin has some influence on the flow patterns near the downstream groin. Localized scour in front of the groin-heads is controlled mainly by ebb flow. In the case of a riverbed composed entirely of silt, the depths of localized scour in front of the two groin- heads are 27 m and 29 m, respectively. In reality, the underneath sediment of the prototype riverbed is clay whose threshold velocity is much higher than the stream velocity in the Yangtze Estuary; therefore, the depths of localized scour will not be much larger than the thickness of the silt layer, i. e. 7.4 m and 4.7 m, respectively. The designed aprons covering the riverbed in fron of the groin-heads are very effective in scour control. Aprons of slightly smaller size can also fulfill the task of protection, but the area of localized scour increases significantly. 展开更多
关键词 Yangtze Estuary physical modelling localized scour waterway dredging GROIN
下载PDF
Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs:karst fault system 被引量:1
16
作者 Zhao-Jie Song Meng Li +2 位作者 Chuang Zhao Yu-Long Yang Ji-Rui Hou 《Petroleum Science》 SCIE CAS CSCD 2020年第2期419-433,共15页
Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configurati... Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced. 展开更多
关键词 Gas injection Remaining oil Enhanced oil recovery Geology-based physical model Karst fault system
下载PDF
Seismic Physical Modeling Technology and Its Applications 被引量:1
17
作者 Di Bangrang Wei Jianxin Mou Yongguang 《Petroleum Science》 SCIE CAS CSCD 2006年第2期39-46,共8页
This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transduce... This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transducers, model materials, model building techniques, precision measurements of model geometry, the basic principles of the seismic physical modeling and experimental methods, and two physical model examples. 展开更多
关键词 Seismic physical modeling similarity principle experimental system TRANSDUCER
下载PDF
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
18
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 Free-standing pile group Piled raft Pileesoileraft interaction physical modeling Cast-in-place concrete piles
下载PDF
Physical modeling of salt structures in the middle south Atlantic marginal basins and their controlling factors 被引量:1
19
作者 YU Yixin TAO Chongzhi +3 位作者 SHI Shuaiyu YIN Jinyin WU Changwu LIU Jingjing 《Petroleum Exploration and Development》 CSCD 2021年第1期136-145,共10页
With many types of salt structures developed in the Lower Cretaceous Aptian Formation,the passive continental marginal basins in the middle segment of the south Atlantic are hot areas of deep-water petroleum explorati... With many types of salt structures developed in the Lower Cretaceous Aptian Formation,the passive continental marginal basins in the middle segment of the south Atlantic are hot areas of deep-water petroleum exploration.Based on analysis of differential deformations of salt structures,the influences of the inclination of subsalt slope,subsalt topographic reliefs and basement uplifting on the formation of salt structures were analyzed by physical modeling in this work.The experimental results show that the subsalt slopes in the middle West Africa basins are steeper,so the salt rock is likely to rapidly flow towards the ocean to form larger and fewer salt diapirs.In the Santos and Campos basins,the basement uplifts outside the basins are far from the provenances,which is conducive to the intrusion and accumulation of salt rock on the top of the basement uplifts.In contrast,in the middle West Africa,the basement uplifts are close to the basin margin,the residual salt layers above them are thin,and small triangular salt structures develop on both sides of the uplifts.Moreover,the uplifting of the African plate is also conducive to the full development of salt diapirs in the middle West Africa and results in large-scale thrust faults and folds in the front compressional zone. 展开更多
关键词 South Atlantic passive continental margin Lower Cretacous salt structure subsalt framework physical modeling
下载PDF
Physical Model of Drying Shrinkage of Recycled Aggregate Concrete 被引量:2
20
作者 郭远臣 WANG Xue QIAN Jueshi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1260-1267,共8页
We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR... We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation. 展开更多
关键词 pore recycled aggregate concrete capillary-bundle physical model drying shrinkage deformation experimental research numerical simulation
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部