To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional ...To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional Climate-Weather Research and Forecasting(CWRF)model at a 30 km resolution driven by ERA-Interim reanalysis data.The ensemble consisted of 28 integrations during 1979-2016 with varying CWRF physics configurations.Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China,but evidently underestimate them.The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences.The skill enhancement is especially large in terms of the interannual variation,which is most sensitive to the cumulus scheme,followed by the boundary layer,surface and radiation schemes,but weakly sensitive to the cloud and microphysics schemes.Generally,the Noah surface scheme,CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996))radiation scheme,prognostic cloud scheme,and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number.However,the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases.Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint me...In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.展开更多
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl...The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.展开更多
Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evoluti...Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evolutionary-simplex algorithm is introduced in this paper.It contains floating encoding which combines the evolutionary computation and the simplex algorithm to overcome the problems encountered in the genetic algorithm and evolutionary strategy methods. Numerical experiments are performed using seven typical functions to verify the algorithm.An inverse analysis method to identify structural physical parameters based on incomplete dynamic responses obtained from the analysis in the time domain is presented by using the evolutionary-simplex algorithm.The modal evolutionary-simplex algorithm converted from the time domain to the modal domain is proposed to improve the inverse efficiency.Numerical calculations for a 50-DOF system show that when compared with other methods,the evolutionary-simplex algorithm offers advantages of high precision, efficient searching ability,strong ability to resist noise,independence of initial value,and good adaptation to incomplete information conditions.展开更多
As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transforma...As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transformation and surface heat flux. The model for calculating H and Q is established in this paper. The measurement methods and data processing for physical parameters such as volume specific heat C, thermal conductivity k, volume latent heat of phase transformation c1 and surface heat flux are introduced The physical parameters of 1Cr18Ni9Ti and 45 steels and the surface heat flux for 1 Cr18Ni9Ti probe cooled in water,10% NaCl water and oil with different temperatures are measured, respectively. These data show that the probability of absolute error less than 2* C between the calculated and measured values in temperature field calculation reaches above 80% if using the above physical parameters, which provides a reliable technology basis for precise calculation of temperature field.展开更多
Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unkno...Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.展开更多
The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. B...The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.展开更多
We are developing a nursing-care robot for physical care tasks. The concept of this robot is to promote the cared persons by the robot to activate their own motion ability as long as possible. This may lead to the imp...We are developing a nursing-care robot for physical care tasks. The concept of this robot is to promote the cared persons by the robot to activate their own motion ability as long as possible. This may lead to the improvement of the cared person's movement volition and movement abilities. In order to realize safe and human friendly robot care tasks, full body manipulation is an important technology, for which it is necessary to estimate the subject's center of gravity from the contact positions and forces with the robot's two arms. In this paper, we estimate the center of gravity of object based on the contact point and the contact force estimated by force sensor on both robot arms. The position of gravity center is important to realize care tasks stably. We performed experiments and simulations for the single point contact and dual points contact cases using a cylindrical object. As a result, it is found that although some errors were recognized in the experiments compared with the simulations, the relations between the contact positions and such errors were observed. Such experimental error mainly comes from the difference of shape between the real robot and the model of the robot in simulation.展开更多
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcast...A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either lin...Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology.展开更多
We present the results of studies conducted on the assessment of groundwater quality observed on several water samples taken from water supply sources in the Pul-e-Charkhi region,which is located near the eastern part...We present the results of studies conducted on the assessment of groundwater quality observed on several water samples taken from water supply sources in the Pul-e-Charkhi region,which is located near the eastern part of Kabul and has seen steady growth in population after the U.S.completed its withdrawal from Afghanistan on 30 August 2021.The water in the basin serves as the main source of water supply and it consists of water discharge from nearby local industries,automobile repair and wash,Osman House,Gradation Place,International Standards Region,and many other regional sources that create a mix of contaminants in discharge to the basin.We collected several samples from each groundwater source for this investigation and transported them carefully to the research laboratory,maintaining the integrity of the samples.The main objective of this study is to assess groundwater quality for the determination of contaminants in groundwater to see what limitations it may pose for recycling and reuse.Such a study is necessary since the region requires persistent sources of water due to a steady increase in population and an associated shortage of water supply due to arid conditions.Furthermore,there is unavailability of similar data since the region served to support military operations since 2001.The samples were analyzed for temperature,electro-conductivity,dissolved oxygen,total dissolved solids,salinity,pH,color,turbidity,hardness,chemicals,and heavy metals.The results obtained suggest that the parameters can be used efficiently to design filtration strategies based on region-specific contamination for the specific catchments located in and around the Kabul Basin.An effort to add additional characterization techniques is described to detect micro/nano plastics and new and emerging contaminants.The efforts reported here are consistent with the 2030 agenda for Sustainable Development Goals.展开更多
The pressurized electroslag remelting(PESR)process has a remarkable impact on manufacturing high nitrogen steels,which can alter the physical parameters of steels and solidification conditions at different atmospheric...The pressurized electroslag remelting(PESR)process has a remarkable impact on manufacturing high nitrogen steels,which can alter the physical parameters of steels and solidification conditions at different atmospheric pressures.The principle and applications of the PESR process are reviewed.The effect of atmospheric pressure,including Gibbs free energy,nitrogen solubility,melting point,viscosity,diffusion coefficient,partition coefficient,and nucleation rate,is explicitly expressed by empirical knowledge and quantified by thermodynamic relationships.The variation of interfacial heat transfer coefficient is discussed at different atmospheric pressures.Furthermore,the effect of atmospheric pressure on physical parameters of steels and solidification conditions during the PESR process is still in their embryonic research stage and it is important to do further study in this research field.Finally,a general concluding remark and suggestions for future development are proposed.展开更多
Lattice engineering and distortion have been considered one kind of effective strategies for discovering advanced materials.The instinct chemical flexibility of high-entropy oxides(HEOs)motivates/accelerates to tailor...Lattice engineering and distortion have been considered one kind of effective strategies for discovering advanced materials.The instinct chemical flexibility of high-entropy oxides(HEOs)motivates/accelerates to tailor the target properties through phase transformations and lattice distortion.Here,a hybrid knowledge-assisted data-driven machine learning(ML)strategy is utilized to discover the A_(2)B_(2)O_(7)-type HEOs with low thermal conductivity(κ)through 17 rare-earth(RE=Sc,Y,La-Lu)solutes optimized A-site.A designing routine integrating the ML and high throughput first principles has been proposed to predict the key physical parameter(KPPs)correlated to the targetedκof advanced HEOs.Among the smart-designed 6188(5RE_(0.2))_(2)Zr_(2)O_(7)HEOs,the best candidates are addressed and validated by the princi-ples of severe lattice distortion and local phase transformation,which effectively reduceκby the strong multi-phonon scattering and weak interatomic interactions.Particularly,(Sc_(0.2)Y_(0.2)La_(0.2)Ce_(0.2)Pr_(0.2))_(2)Zr_(2)O_(7)with predictedκbelow 1.59 Wm^(−1)K^(−1)is selected to be verified,which matches well with the ex-perimentalκ=1.69 Wm^(−1)K^(−1)at 300 K and could be further decreased to 0.14 Wm^(−1)K^(−1)at 1473 K.Moreover,the coupling effects of lattice vibrations and charges on heat transfer are revealed by the cross-validations of various models,indicating that the weak bonds with low electronegativity and few bond-ing charge density and the lattice distortion(r∗)identified by cation radius ratio(r A/r B)should be the KPPs to decreaseκefficiently.This work supports an intelligent designing strategy with limited atomic and electronic KPPs to accelerate the development of advanced multi-component HEOs with proper-ties/performance at multi-scales.展开更多
This study employs the regional Climate-Weather Research and Forecasting model(CWRF)to first investigate the primary physical mechanisms causing biases in simulating summer precipitation over the Yangtze River Basin(Y...This study employs the regional Climate-Weather Research and Forecasting model(CWRF)to first investigate the primary physical mechanisms causing biases in simulating summer precipitation over the Yangtze River Basin(YRB),and then enhance its predictive ability through an optimal multi-physics ensemble approach.The CWRF 30-km simulations in China are compared among 28 combinations of varying physics parameterizations during 1980−2015.Long-term average summer biases in YRB precipitation are remotely correlated with those of large-scale circulations.These teleconnections of biases are highly consistent with the observed correlation patterns between interannual variations of precipitation and circulations,despite minor shifts in their primary action centers.Increased YRB precipitation aligns with a southward shifted East Asian westerly jet,an intensified low-level southerly flow south of YRB,and a south-eastward shifted South Asian high,alongside higher moisture availability over YRB.Conversely,decreased YRB precipitation corresponds to an opposite circulation pattern.The CWRF control configuration using the ensemble cumulus parameterization(ECP),compared to other cumulus schemes,best captures the observed YRB precipitation characteristics and associated circulation patterns.Coupling ECP with the Morrison or Morrison-aerosol microphysics and the CCCMA or CAML radiation schemes enhances the overall CWRF skills.Compared to the control CWRF,the ensemble average of these skill-enhanced physics configurations more accurately reproduces YRB summer precipitation’s spatial distributions,interannual anomalies,and associated circulation patterns.The Bayesian Joint Probability calibration to these configurations improves the ensemble’s spatial distributions but compromises its interannual anomalies and teleconnection patterns.Our findings highlight substantial potential for refining the representation of climate system physics to improve YRB precipitation prediction.This is notably achieved by realistically coupling cumulus,microphysics,and radiation processes to accurately capture circulation teleconnections.Further enhancements can be achieved by optimizing the multi-physics ensemble among skill-enhanced configurations.展开更多
A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advec- tion fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Fore...A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advec- tion fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Manage- ment Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are per- formed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, sug- gesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physi- cal processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.展开更多
A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yi...A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yin-Yang grid was coupled with the physical parameterization package of the operational version of GRAPES. A 3.5-yr integration was carried out on an aqua planet to assess the numerical performance of this non-hydrostatic mo- del relative to other models. Specific aspects of precipitation and general circulation under two different sea surface temperature (SST) conditions (CONTROL and FLAT) were analyzed. The CONTROL SST peaked at the equator. The FLAT SST had its maximum gradient at about 20~ latitude, giving a broad equatorial SST maximum in the trop- ics and flat profile approaching the equator. The tropical precipitation showed different propagation features in the CONTROL and FLAT simulations. The CONTROL showed tropical precipitation bands moving eastward with some envelopes of westward convective-scale disturbance. Less organized westward-propagating rainfall cells and bands were seen in the FLAT and the propagation of the tropical wave varied with the SST gradient. The Inter Tropical Convergence Zone (ITCZ), Hadley cell, and westerly jet core were weaker and more poleward as the SST profile flattened from the CONTROL to FLAT. The climatological structures simulated by GRAPES_YY, such as the distri- bution of precipitation and the large-scale circulation, fell within the bounds from other models. The stronger ITCZ precipitation, accompanied with stronger Hadley cells and convective heating in the CONTROL simulation, may be summed up as a result of stronger parameterized convection and the non-hydrostatic effects in GRAPES_YY. In ad- dition, mechanism of the zonal mean circulation maintaining is analyzed for the different SST patterns referring the transient eddy flux.展开更多
A three-dimensional elastic nonhydrostatic mesoscale(β-γ)model with nested-grid is presented.It uses a set of full equations in terrain-following coordinates as its basic dynamic frame,which is solved with a time-sp...A three-dimensional elastic nonhydrostatic mesoscale(β-γ)model with nested-grid is presented.It uses a set of full equations in terrain-following coordinates as its basic dynamic frame,which is solved with a time-splitting algorithm for acoustic and gravity waves.The model physical parameterization includes a K-theory subgrid eddy mixing for cloud and free atmosphere,a bulk planetary boundary layer parameterization,and three types of sofisticated cloud microphysics schemes with double-parameters for hail-bearing clouds,warm clouds and snowing clouds respectively. The model is designed to be used flexibly for simulations of a variety of meso-and small-scale atmospheric processes, and can be improved as a regional and local operational NWP system in future.展开更多
Tight oil/gas medium is a special porous medium,which plays a significant role in oil and gas exploration.This paper is devoted to the derivation of wave equations in such a media,which take a much simpler form compar...Tight oil/gas medium is a special porous medium,which plays a significant role in oil and gas exploration.This paper is devoted to the derivation of wave equations in such a media,which take a much simpler form compared to the general equations in the poroelasticity theory and can be employed for parameter inversion from seismic data.We start with the fluid and solid motion equations at a pore scale,and deduce the complete Biot’s equations by applying the volume averaging technique.The underlying assumptions are carefully clarified.Moreover,time dependence of the permeability in tight oil/gas media is discussed based on available results from rock physical experiments.Leveraging the Kozeny-Carman equation,time dependence of the porosity is theoretically investigated.We derive the wave equations in tight oil/gas media based on the complete Biot’s equations under some reasonable assumptions on the media.The derived wave equations have the similar form as the diffusiveviscous wave equations.A comparison of the two sets of wave equations reveals explicit relations between the coefficients in diffusive-viscous wave equations and the measurable parameters for the tight oil/gas media.The derived equations are validated by numerical results.Based on the derived equations,reflection and transmission properties for a single tight interlayer are investigated.The numerical results demonstrate that the reflection and transmission of the seismic waves are affected by the thickness and attenuation of the interlayer,which is of great significance for the exploration of oil and gas.展开更多
基金supported by the National Climate Center of China under Grants 2211011816501。
文摘To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional Climate-Weather Research and Forecasting(CWRF)model at a 30 km resolution driven by ERA-Interim reanalysis data.The ensemble consisted of 28 integrations during 1979-2016 with varying CWRF physics configurations.Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China,but evidently underestimate them.The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences.The skill enhancement is especially large in terms of the interannual variation,which is most sensitive to the cumulus scheme,followed by the boundary layer,surface and radiation schemes,but weakly sensitive to the cloud and microphysics schemes.Generally,the Noah surface scheme,CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996))radiation scheme,prognostic cloud scheme,and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number.However,the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases.Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金Application investigation of conditional nonlinear optimal perturbation in typhoon adaptive observation (40830955)
文摘In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.
基金The project supported by the Innovative Project of CAS (KJCX-SW-L08)the National Basic Research Program of China(973)
文摘The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
基金National Natural Science Foundation of China(Grant No.50278006)
文摘Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evolutionary-simplex algorithm is introduced in this paper.It contains floating encoding which combines the evolutionary computation and the simplex algorithm to overcome the problems encountered in the genetic algorithm and evolutionary strategy methods. Numerical experiments are performed using seven typical functions to verify the algorithm.An inverse analysis method to identify structural physical parameters based on incomplete dynamic responses obtained from the analysis in the time domain is presented by using the evolutionary-simplex algorithm.The modal evolutionary-simplex algorithm converted from the time domain to the modal domain is proposed to improve the inverse efficiency.Numerical calculations for a 50-DOF system show that when compared with other methods,the evolutionary-simplex algorithm offers advantages of high precision, efficient searching ability,strong ability to resist noise,independence of initial value,and good adaptation to incomplete information conditions.
文摘As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transformation and surface heat flux. The model for calculating H and Q is established in this paper. The measurement methods and data processing for physical parameters such as volume specific heat C, thermal conductivity k, volume latent heat of phase transformation c1 and surface heat flux are introduced The physical parameters of 1Cr18Ni9Ti and 45 steels and the surface heat flux for 1 Cr18Ni9Ti probe cooled in water,10% NaCl water and oil with different temperatures are measured, respectively. These data show that the probability of absolute error less than 2* C between the calculated and measured values in temperature field calculation reaches above 80% if using the above physical parameters, which provides a reliable technology basis for precise calculation of temperature field.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175157,U124208)
文摘Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.
基金supported by the National Natural Science Foundation of China(Nos.11732011,11672205,and 11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.
文摘We are developing a nursing-care robot for physical care tasks. The concept of this robot is to promote the cared persons by the robot to activate their own motion ability as long as possible. This may lead to the improvement of the cared person's movement volition and movement abilities. In order to realize safe and human friendly robot care tasks, full body manipulation is an important technology, for which it is necessary to estimate the subject's center of gravity from the contact positions and forces with the robot's two arms. In this paper, we estimate the center of gravity of object based on the contact point and the contact force estimated by force sensor on both robot arms. The position of gravity center is important to realize care tasks stably. We performed experiments and simulations for the single point contact and dual points contact cases using a cylindrical object. As a result, it is found that although some errors were recognized in the experiments compared with the simulations, the relations between the contact positions and such errors were observed. Such experimental error mainly comes from the difference of shape between the real robot and the model of the robot in simulation.
文摘A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(41975056,41675045)。
文摘Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology.
文摘We present the results of studies conducted on the assessment of groundwater quality observed on several water samples taken from water supply sources in the Pul-e-Charkhi region,which is located near the eastern part of Kabul and has seen steady growth in population after the U.S.completed its withdrawal from Afghanistan on 30 August 2021.The water in the basin serves as the main source of water supply and it consists of water discharge from nearby local industries,automobile repair and wash,Osman House,Gradation Place,International Standards Region,and many other regional sources that create a mix of contaminants in discharge to the basin.We collected several samples from each groundwater source for this investigation and transported them carefully to the research laboratory,maintaining the integrity of the samples.The main objective of this study is to assess groundwater quality for the determination of contaminants in groundwater to see what limitations it may pose for recycling and reuse.Such a study is necessary since the region requires persistent sources of water due to a steady increase in population and an associated shortage of water supply due to arid conditions.Furthermore,there is unavailability of similar data since the region served to support military operations since 2001.The samples were analyzed for temperature,electro-conductivity,dissolved oxygen,total dissolved solids,salinity,pH,color,turbidity,hardness,chemicals,and heavy metals.The results obtained suggest that the parameters can be used efficiently to design filtration strategies based on region-specific contamination for the specific catchments located in and around the Kabul Basin.An effort to add additional characterization techniques is described to detect micro/nano plastics and new and emerging contaminants.The efforts reported here are consistent with the 2030 agenda for Sustainable Development Goals.
基金The authors gratefully express their appreciation to the National Natural Science Foundation of China(Nos.U1960203,51974153,and 52174317).
文摘The pressurized electroslag remelting(PESR)process has a remarkable impact on manufacturing high nitrogen steels,which can alter the physical parameters of steels and solidification conditions at different atmospheric pressures.The principle and applications of the PESR process are reviewed.The effect of atmospheric pressure,including Gibbs free energy,nitrogen solubility,melting point,viscosity,diffusion coefficient,partition coefficient,and nucleation rate,is explicitly expressed by empirical knowledge and quantified by thermodynamic relationships.The variation of interfacial heat transfer coefficient is discussed at different atmospheric pressures.Furthermore,the effect of atmospheric pressure on physical parameters of steels and solidification conditions during the PESR process is still in their embryonic research stage and it is important to do further study in this research field.Finally,a general concluding remark and suggestions for future development are proposed.
基金supported by National defense ba-sic scientific research(Grant Nos.2022-JCKY-JJ-1086 and 211-CXCY-N103-03-04-00).
文摘Lattice engineering and distortion have been considered one kind of effective strategies for discovering advanced materials.The instinct chemical flexibility of high-entropy oxides(HEOs)motivates/accelerates to tailor the target properties through phase transformations and lattice distortion.Here,a hybrid knowledge-assisted data-driven machine learning(ML)strategy is utilized to discover the A_(2)B_(2)O_(7)-type HEOs with low thermal conductivity(κ)through 17 rare-earth(RE=Sc,Y,La-Lu)solutes optimized A-site.A designing routine integrating the ML and high throughput first principles has been proposed to predict the key physical parameter(KPPs)correlated to the targetedκof advanced HEOs.Among the smart-designed 6188(5RE_(0.2))_(2)Zr_(2)O_(7)HEOs,the best candidates are addressed and validated by the princi-ples of severe lattice distortion and local phase transformation,which effectively reduceκby the strong multi-phonon scattering and weak interatomic interactions.Particularly,(Sc_(0.2)Y_(0.2)La_(0.2)Ce_(0.2)Pr_(0.2))_(2)Zr_(2)O_(7)with predictedκbelow 1.59 Wm^(−1)K^(−1)is selected to be verified,which matches well with the ex-perimentalκ=1.69 Wm^(−1)K^(−1)at 300 K and could be further decreased to 0.14 Wm^(−1)K^(−1)at 1473 K.Moreover,the coupling effects of lattice vibrations and charges on heat transfer are revealed by the cross-validations of various models,indicating that the weak bonds with low electronegativity and few bond-ing charge density and the lattice distortion(r∗)identified by cation radius ratio(r A/r B)should be the KPPs to decreaseκefficiently.This work supports an intelligent designing strategy with limited atomic and electronic KPPs to accelerate the development of advanced multi-component HEOs with proper-ties/performance at multi-scales.
基金funded by the US National Science Foundation Innovations at the Nexus of Food,Energy and Water Systems(US-China INFEWS)under Grant EAR1903249the China Meteorological Administration/National Climate Center research subcontract 2211011816501the the Shanghai 2021“Scientific and technological innovation action plan”Natural Science Foundation(Grant No.21ZR1420400).
文摘This study employs the regional Climate-Weather Research and Forecasting model(CWRF)to first investigate the primary physical mechanisms causing biases in simulating summer precipitation over the Yangtze River Basin(YRB),and then enhance its predictive ability through an optimal multi-physics ensemble approach.The CWRF 30-km simulations in China are compared among 28 combinations of varying physics parameterizations during 1980−2015.Long-term average summer biases in YRB precipitation are remotely correlated with those of large-scale circulations.These teleconnections of biases are highly consistent with the observed correlation patterns between interannual variations of precipitation and circulations,despite minor shifts in their primary action centers.Increased YRB precipitation aligns with a southward shifted East Asian westerly jet,an intensified low-level southerly flow south of YRB,and a south-eastward shifted South Asian high,alongside higher moisture availability over YRB.Conversely,decreased YRB precipitation corresponds to an opposite circulation pattern.The CWRF control configuration using the ensemble cumulus parameterization(ECP),compared to other cumulus schemes,best captures the observed YRB precipitation characteristics and associated circulation patterns.Coupling ECP with the Morrison or Morrison-aerosol microphysics and the CCCMA or CAML radiation schemes enhances the overall CWRF skills.Compared to the control CWRF,the ensemble average of these skill-enhanced physics configurations more accurately reproduces YRB summer precipitation’s spatial distributions,interannual anomalies,and associated circulation patterns.The Bayesian Joint Probability calibration to these configurations improves the ensemble’s spatial distributions but compromises its interannual anomalies and teleconnection patterns.Our findings highlight substantial potential for refining the representation of climate system physics to improve YRB precipitation prediction.This is notably achieved by realistically coupling cumulus,microphysics,and radiation processes to accurately capture circulation teleconnections.Further enhancements can be achieved by optimizing the multi-physics ensemble among skill-enhanced configurations.
基金Supported by the National Natural Science Foundation of China(4130511 and U1233138)Safety Capability Enhancement Program of Civil Aviation Administration of China(TMSA1605)
文摘A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advec- tion fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Manage- ment Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are per- formed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, sug- gesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physi- cal processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.
基金Supported by the National Natural Science Foundation of China(41575103 and 91637210)Chinese Academy of Meteorological Sciences Research Project Funds(2015Z002 and 2018KJ039)
文摘A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yin-Yang grid was coupled with the physical parameterization package of the operational version of GRAPES. A 3.5-yr integration was carried out on an aqua planet to assess the numerical performance of this non-hydrostatic mo- del relative to other models. Specific aspects of precipitation and general circulation under two different sea surface temperature (SST) conditions (CONTROL and FLAT) were analyzed. The CONTROL SST peaked at the equator. The FLAT SST had its maximum gradient at about 20~ latitude, giving a broad equatorial SST maximum in the trop- ics and flat profile approaching the equator. The tropical precipitation showed different propagation features in the CONTROL and FLAT simulations. The CONTROL showed tropical precipitation bands moving eastward with some envelopes of westward convective-scale disturbance. Less organized westward-propagating rainfall cells and bands were seen in the FLAT and the propagation of the tropical wave varied with the SST gradient. The Inter Tropical Convergence Zone (ITCZ), Hadley cell, and westerly jet core were weaker and more poleward as the SST profile flattened from the CONTROL to FLAT. The climatological structures simulated by GRAPES_YY, such as the distri- bution of precipitation and the large-scale circulation, fell within the bounds from other models. The stronger ITCZ precipitation, accompanied with stronger Hadley cells and convective heating in the CONTROL simulation, may be summed up as a result of stronger parameterized convection and the non-hydrostatic effects in GRAPES_YY. In ad- dition, mechanism of the zonal mean circulation maintaining is analyzed for the different SST patterns referring the transient eddy flux.
文摘A three-dimensional elastic nonhydrostatic mesoscale(β-γ)model with nested-grid is presented.It uses a set of full equations in terrain-following coordinates as its basic dynamic frame,which is solved with a time-splitting algorithm for acoustic and gravity waves.The model physical parameterization includes a K-theory subgrid eddy mixing for cloud and free atmosphere,a bulk planetary boundary layer parameterization,and three types of sofisticated cloud microphysics schemes with double-parameters for hail-bearing clouds,warm clouds and snowing clouds respectively. The model is designed to be used flexibly for simulations of a variety of meso-and small-scale atmospheric processes, and can be improved as a regional and local operational NWP system in future.
基金the National Natural Science Foundation of China(Grant Nos.41390450,41390454,91730306)the National Science and Technology Major Projects(Grant Nos.2016ZX05024-001-007,2017ZX05069)the National Key R&D Program of the Ministry of Science and Technology of China(Grant No.2018YFC0603501)。
文摘Tight oil/gas medium is a special porous medium,which plays a significant role in oil and gas exploration.This paper is devoted to the derivation of wave equations in such a media,which take a much simpler form compared to the general equations in the poroelasticity theory and can be employed for parameter inversion from seismic data.We start with the fluid and solid motion equations at a pore scale,and deduce the complete Biot’s equations by applying the volume averaging technique.The underlying assumptions are carefully clarified.Moreover,time dependence of the permeability in tight oil/gas media is discussed based on available results from rock physical experiments.Leveraging the Kozeny-Carman equation,time dependence of the porosity is theoretically investigated.We derive the wave equations in tight oil/gas media based on the complete Biot’s equations under some reasonable assumptions on the media.The derived wave equations have the similar form as the diffusiveviscous wave equations.A comparison of the two sets of wave equations reveals explicit relations between the coefficients in diffusive-viscous wave equations and the measurable parameters for the tight oil/gas media.The derived equations are validated by numerical results.Based on the derived equations,reflection and transmission properties for a single tight interlayer are investigated.The numerical results demonstrate that the reflection and transmission of the seismic waves are affected by the thickness and attenuation of the interlayer,which is of great significance for the exploration of oil and gas.