Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder...Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results ...Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.展开更多
Large oilfields are often coincidentally located in major river deltas and wetlands,and potentially damage the structure,function and ecosystem service values of wetlands during oil exploration.In the present study,th...Large oilfields are often coincidentally located in major river deltas and wetlands,and potentially damage the structure,function and ecosystem service values of wetlands during oil exploration.In the present study,the effects of crude oil contamination during oil exploration on soil physical and chemical properties were investigated in marshes of the Momoge National Nature Reserve in Jilin Province,China.The concentrations of total petroleum hydrocarbons in the marsh soil near the oil wells are significantly higher than those in the adjacent control marsh.Soil water contents in oil-contaminated marshes are negatively correlated with soil temperature and are significantly lower than those in the control area,especially in fall.Crude oil contamination significantly increases the soil pH up to8.0,and reduces available phosphorus concentrations in the soil.The concentrations of total organic carbon are significantly different among sampling sites.Therefore,crude oil contamination could potentially alkalinize marsh soils,adversely affect soil fertility and physical properties,and cause deterioration of the marshes in the Momoge National Nature Reserve.Phyto-remediation by planting Calamagrostis angustifolia has the potential to simultaneously restore and remediate the petroleum hydrocarbon-contaminated wetlands.Crude oil contamination affects the soil physical and chemical properties,so developing an effective restoration program in the Momoge wetland is neccesary.展开更多
Different kinds of base oils with different viscosity were analyzed in this paper, including eight mineral base oils, alkylnaphthalene and three synthetic PAO oils. The influence of different hydrocarbon molecules on ...Different kinds of base oils with different viscosity were analyzed in this paper, including eight mineral base oils, alkylnaphthalene and three synthetic PAO oils. The influence of different hydrocarbon molecules on physical properties of mineral base oils was investigated, such as density(d), kinematic viscosity(KV), viscosity index(VI), etc. Possible reasons for some inconsistent phenomena in data processing were also theoretically analyzed in detail. The refractive indexes(RI), d and molecular weight(M) decrease linearly with the increase of paraffinic content other than KV, which declines exponentially. There are no clear relationships between physical properties of base oils and naphthenic content while polycyclic alkanes show a strong correlation with M and KV. The influence of aromatics on physical properties of base oils is just the opposite of paraffin's. VI of the base oils with low aromatics content increases linearly as their paraffinic contents rise when their carbon numbers are approximately equal. However, base oils with high aromatics content follow an utterly different rule, in which VI declines dramatically linearly with the increase in polycyclic aromatic content, which is the essential reason why naphthenic base oils all have terrible viscosity-temperature characteristics while paraffinic base oils usually do not.展开更多
Despite many efforts into the study of fluids interaction in low salinity water flooding, they are not probing the basics of transport phenomena between the involved phases. This work is aimed to bring new understandi...Despite many efforts into the study of fluids interaction in low salinity water flooding, they are not probing the basics of transport phenomena between the involved phases. This work is aimed to bring new understanding of fluid-fluid interaction during low salinity water flooding through a series of organized experiments in which a crude oil sample with known properties was kept in contact with different brine solutions of various ionic strengths. Measuring brine pH, conductivity and crude oil viscosity and density for a period of 45 days illustrates the strong effect of the contact time and ionic strength on the dissociation of polar components and physical properties of the crude oil and brine. Besides, the interfacial tension(IFT) measurements show that the interfacial interactions are affected by several competitive interfacial processes. By decreasing the ionic strength of the brine, the solubility of naphthenic acids in the aqueous solution increases, and hence,the conductivity and the pH of the aqueous phase decrease. To verify this important finding, UV-Vis spectroscopy and 'H NMR analysis were also performed on aged brine samples. Notably, there is an ionic strength of brine in which the lowest IFT is observed, while the other physical properties are remained relatively unchanged.展开更多
Most of the seeds produced by neem (Azadirachta indica A. Juss) trees in Nigeria are currently underutilized. Hence, relevant literature provides only limited information conceming many of the seed oils from this co...Most of the seeds produced by neem (Azadirachta indica A. Juss) trees in Nigeria are currently underutilized. Hence, relevant literature provides only limited information conceming many of the seed oils from this country, especially where it concems the potential applications of these oils as preservatives for ligno-cellulose against bio-deterioration. Using standard procedures therefore, this study was carried out to evaluate and document selected physical and chemical properties of neem seed oil (NSO), mechanically extracted using a cold press at 31.03 N-mm^-2 pressure and a room temperature of 25 ± 2℃. The results show that oil yield was 38.42% with a specific gravity of 0.91 ± 0.01. The amount of acid was 18.24 ± 1.31 mg KOH.g^-1 and that of iodine 93.12 ± 2.01 g-100 g^- 1, while saponification and peroxide values were 172.88 ± 2.06 and 1.42 ± 0.04 mg·g^-1 respectively. The implication of the values obtained, particularly those for the chemical properties, as they concern the potential application of NSO as a preservative for ligno-eellulose, is likely that it may be useful in this regard since the values may support some of the documented anti-microbial properties of the oil, although other physical and chemical properties that may affect this potential are recommended for investigations. Conclusions and other recommendations follow in line with the results of the study.展开更多
[Objective] This study aimed to explore the relationship between contents of heavy metals with soil type, altitude distribution as well as physical and chemical properties. [Method] Based on determination of contents ...[Objective] This study aimed to explore the relationship between contents of heavy metals with soil type, altitude distribution as well as physical and chemical properties. [Method] Based on determination of contents of soil heavy metals and soil physical and chemical properties from agricultural land in Central Yunnan Province, the relationship between soil heavy metals with soil type, altitude distribu- tion and soil physical and chemical properties were analyzed. [Result] The average contents of all heavy metals in farmland of Central Yunnan didn't extend their limits of Grade II in the National Soil Environmental Quality Standard (GB15618-1995). and the heavy metals content in red soil was higher than that in other types. Soil Cd content changes slightly with the altitude, while contents of other heavy metals were greatly affected by altitude. There were extremely significant positive correlation between heavy metals and clay particle content, that is, soil with heavier texture has more heavy metals. There was positive correlation between pH and each heavy metal content; there were positive correlation between Mn with Pb, Cd, Hg and Hg; exchangeable Ca and Mg contents in soil show negative correlations with most heavy metals. [Conclusion] This study has provided scientific bases for the heavy metal management in Central Yunnan area.展开更多
It has been known that the productivity of artesian wells is strongly dependent on the rheological properties of crude oils. This work targets two deep artesian wells(>5000 m) that are producing heavy crude oil. Th...It has been known that the productivity of artesian wells is strongly dependent on the rheological properties of crude oils. This work targets two deep artesian wells(>5000 m) that are producing heavy crude oil. The impacts of well conditions including temperature, pressure and shear rate, on the crude oil rheology were comprehensively investigated and correlated using several empirical rheological models. The experimental data indicate that this heavy oil is very sensitive to temperature as result of microstructure change caused by hydrogen bonding. The rheological behavior of the heavy oil is also significantly impacted by the imposed pressure, i.e., the viscosity flow activation energy(Eμ) gently increases with the increasing pressure. The viscosity–shear rate data are well fitted to the power law model at low temperature. However, due to the transition of fluid feature at high temperature(Newtonian fluid), the measured viscosity was found to slightly deviate from the fitting data. Combining the evaluated correlations, the viscosity profile of the heavy crude oil in these two deep artesian wells as a function of well depth was predicted using the oilfield producing data.展开更多
To improve the oil recovery and economic efficiency in heavy oil reservoirs in late steam flooding,taking J6 Block of Xinjiang Oilfield as the research object,3D physical modeling experiments of steam flooding,CO2-foa...To improve the oil recovery and economic efficiency in heavy oil reservoirs in late steam flooding,taking J6 Block of Xinjiang Oilfield as the research object,3D physical modeling experiments of steam flooding,CO2-foam assisted steam flooding,and CO2 assisted steam flooding under different perforation conditions are conducted,and CO2-assisted steam flooding is proposed for reservoirs in the late stage of steam flooding.The experimental results show that after adjusting the perforation in late steam flooding,the CO2 assisted steam flooding formed a lateral expansion of the steam chamber in the middle and lower parts of the injection well and a development mode for the production of overriding gravity oil drainage in the top chamber of the production well;high temperature water,oil,and CO2 formed stable low-viscosity quasi-single-phase emulsified fluid;and CO2 acted as a thermal insulation in the steam chamber at the top,reduced the steam partial pressure inside the steam chamber,and effectively improved the heat efficiency of injected steam.Based on the three-dimensional physical experiments and the developed situation of the J6 block in Xinjiang Oilfield,the CO2 assisted steam flooding for the J6 block was designed.The application showed that the CO2 assisted steam flooding made the oil vapor ratio increase from 0.12 to 0.16 by 34.0%,the oil recovery increase from 16.1%to 21.5%,and the final oil recovery goes up to 66.5%compared to steam flooding after perforation adjustment.展开更多
This paper reports a field survey undertaken to determine the availability of raw material for palm kernel oil commercial production for industrial applications. Both industrial and artisanal wastes from palm kernel o...This paper reports a field survey undertaken to determine the availability of raw material for palm kernel oil commercial production for industrial applications. Both industrial and artisanal wastes from palm kernel oil production were also surveyed as raw material (palm kernel seeds) for green energy production. Results of the field study show that 22% of palm kernel seeds (which represents tons of waste) resulting from palm oil processing plants are dumped while at the artisanal level, 80% of palm kernel seed waste is dumped. Analysis of field study data show<span>s</span><span> that large amounts of waste palm kernel seeds are available to enable large scale production of palm kernel oil (PKO) for desirable industrial applications in green energy production. The paper also reports on the physical and chemical properties of Cameroon palm kernel oil (PKO). Palm kernel oil was extracted using mechanical press and solvent extraction. The palm kernel oil (PKO) from Cameroon was analyzed by standard physico-chemical methods. Results of the physical measurements show a specific gravity of PKO of 0.92 kg/L, viscosity of 26.03 cSt and at 5.93 cSt at 40<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C and 100<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C respectively, viscosity index of 185, pour point of 20<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, cloud point of 29<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, flash point of 200<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, aniline point of 105<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>F, diesel index of 23, cetane number of 27 and ASTM (American Standards for Testing and Materials) color of less than 2.5. Results of chemical analyses showed an acid val<span>ue of 17.95 mg KOH/g, free fatty <span>acid (FFA) content of 8.98 mg KOH/g, iodine value o</span></span></span><span><span><span>f 2.10</span><span> mg</span></span></span><span> </span><span><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">2</span></sub><span><span style="font-family:Verdana;">/g</span><span style="font-family:Verdana;">, peroxide value of 2.10 meq/kg, ester value of 123.0 mg KOH/g, hydroxyl value of 93.4 mg OH/g, saponification value of 140.95 mg KOH/g and a sulfur content of 0.016% w/v, signifying low sulfur content. Gas chromatography-mass spectrometry (GC-MS) showed the palm kernel oil to be predominantly made up of glycerides of various fatty acids with higher proportions of C12 to C16 fatty acid residues. Cameroon PKO therefore has a broad spectrum of industrial applications by virtue of its rich physical and chemical properties.</span></span></span>展开更多
This research presents the evaluation of activated Bentonite material for treatment of used transformer oil. Different properties such as;electrical, physical, chemical and thermal of used transformer oil were meas-ur...This research presents the evaluation of activated Bentonite material for treatment of used transformer oil. Different properties such as;electrical, physical, chemical and thermal of used transformer oil were meas-ured before and after purification and treatment. Two power transformers were used in this research (6.4: 4.6 MVA, 3 phases, 50 Hz). One of them was filled with purified oil and the other was filled with activated Bentonite treated oil after purification, and then the two power transformers were tested for one year under practical conditions of the operating field. Initial tests have indicated that the use of Activated BENTONITE in the treatment process for the aged transformer oil improved breakdown voltage, water content, total acidi-ty and flash point. Thus activated Bentonite gives an ideal treatment of aged transformer oil with its environmental and economic advantages. Moreover, activated Bentonite is available at many places in Egypt with low costs.展开更多
Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assi...Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assisted gravity drain-age(SAGD).Using an ultrasonic base made of polyether ether ketone resin instead of titanium alloy can improve the signal en-ergy and signal-to-noise ratio and get clear first arrival;with the rise of temperature,heavy oil changes from glass state(at-34.4℃),to quasi-solid state,and to liquid state(at 49.0℃)gradually;the quasi-solid heavy oil has significant frequency dis-persion.For the sand sample with high oil saturation,its elastic property depends mainly on the nature of the heavy oil,while for the sand sample with low oil saturation,the elastic property depends on the stiffness of the rock matrix.The elastic property of the oil sand is sensitive to temperature noticeably,when the temperature increases from 10℃ to 175℃,the oil sand samples decrease in compressional and shear wave velocities significantly.Based on the experimental data,the quantita-tive relationship between the compressional wave impedance of the oil sand and temperature was worked out,and the tem-perature variation of the steam chamber in the study area was predicted by time-lapse seismic inversion.展开更多
This work gives tools to overcome the difficulty to determine experimentally physical properties for vegetable oils within the range of temperature typically observed during the injection phase in a diesel engine. Kno...This work gives tools to overcome the difficulty to determine experimentally physical properties for vegetable oils within the range of temperature typically observed during the injection phase in a diesel engine. Knowing vegetable oils’ physical properties to these ranges of temperature is of fundamental importance when modeling their combustion in diesel engine. However, vegetable oils’ experimental physical properties data are rare in the literature for temperature above 523 K. This paper describes experimental measurements and estimation methods for density, dynamic viscosity, thermal conductivity and heat capacity of vegetable oils for this particular range of temperature. The methodology uses several correlative methods using group contribution approach for each property and compares experimental data with predicted one to select the more accurate model. This work has shown the rapeseed and jatropha oils’ physical properties can be satisfactorily predicted as a function of temperature using group contribution approach.展开更多
基金supported by the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294).
文摘Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
基金supported by NSFC(41930425)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ008)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-01)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)and NSFC(42274142).
文摘Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.
基金Under the auspices of National Natural Science Foundation of China(No.31170476)Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams(No.KZZD-EW-TZ-07)+1 种基金Major Program of Science and Technology of Jilin Province(No.20075014)Fundamental Research Funds for the Central Universities of China(No.11GJHZ002)
文摘Large oilfields are often coincidentally located in major river deltas and wetlands,and potentially damage the structure,function and ecosystem service values of wetlands during oil exploration.In the present study,the effects of crude oil contamination during oil exploration on soil physical and chemical properties were investigated in marshes of the Momoge National Nature Reserve in Jilin Province,China.The concentrations of total petroleum hydrocarbons in the marsh soil near the oil wells are significantly higher than those in the adjacent control marsh.Soil water contents in oil-contaminated marshes are negatively correlated with soil temperature and are significantly lower than those in the control area,especially in fall.Crude oil contamination significantly increases the soil pH up to8.0,and reduces available phosphorus concentrations in the soil.The concentrations of total organic carbon are significantly different among sampling sites.Therefore,crude oil contamination could potentially alkalinize marsh soils,adversely affect soil fertility and physical properties,and cause deterioration of the marshes in the Momoge National Nature Reserve.Phyto-remediation by planting Calamagrostis angustifolia has the potential to simultaneously restore and remediate the petroleum hydrocarbon-contaminated wetlands.Crude oil contamination affects the soil physical and chemical properties,so developing an effective restoration program in the Momoge wetland is neccesary.
文摘Different kinds of base oils with different viscosity were analyzed in this paper, including eight mineral base oils, alkylnaphthalene and three synthetic PAO oils. The influence of different hydrocarbon molecules on physical properties of mineral base oils was investigated, such as density(d), kinematic viscosity(KV), viscosity index(VI), etc. Possible reasons for some inconsistent phenomena in data processing were also theoretically analyzed in detail. The refractive indexes(RI), d and molecular weight(M) decrease linearly with the increase of paraffinic content other than KV, which declines exponentially. There are no clear relationships between physical properties of base oils and naphthenic content while polycyclic alkanes show a strong correlation with M and KV. The influence of aromatics on physical properties of base oils is just the opposite of paraffin's. VI of the base oils with low aromatics content increases linearly as their paraffinic contents rise when their carbon numbers are approximately equal. However, base oils with high aromatics content follow an utterly different rule, in which VI declines dramatically linearly with the increase in polycyclic aromatic content, which is the essential reason why naphthenic base oils all have terrible viscosity-temperature characteristics while paraffinic base oils usually do not.
基金supported by Iranian Offshore Oil Company (IOOC)
文摘Despite many efforts into the study of fluids interaction in low salinity water flooding, they are not probing the basics of transport phenomena between the involved phases. This work is aimed to bring new understanding of fluid-fluid interaction during low salinity water flooding through a series of organized experiments in which a crude oil sample with known properties was kept in contact with different brine solutions of various ionic strengths. Measuring brine pH, conductivity and crude oil viscosity and density for a period of 45 days illustrates the strong effect of the contact time and ionic strength on the dissociation of polar components and physical properties of the crude oil and brine. Besides, the interfacial tension(IFT) measurements show that the interfacial interactions are affected by several competitive interfacial processes. By decreasing the ionic strength of the brine, the solubility of naphthenic acids in the aqueous solution increases, and hence,the conductivity and the pH of the aqueous phase decrease. To verify this important finding, UV-Vis spectroscopy and 'H NMR analysis were also performed on aged brine samples. Notably, there is an ionic strength of brine in which the lowest IFT is observed, while the other physical properties are remained relatively unchanged.
文摘Most of the seeds produced by neem (Azadirachta indica A. Juss) trees in Nigeria are currently underutilized. Hence, relevant literature provides only limited information conceming many of the seed oils from this country, especially where it concems the potential applications of these oils as preservatives for ligno-cellulose against bio-deterioration. Using standard procedures therefore, this study was carried out to evaluate and document selected physical and chemical properties of neem seed oil (NSO), mechanically extracted using a cold press at 31.03 N-mm^-2 pressure and a room temperature of 25 ± 2℃. The results show that oil yield was 38.42% with a specific gravity of 0.91 ± 0.01. The amount of acid was 18.24 ± 1.31 mg KOH.g^-1 and that of iodine 93.12 ± 2.01 g-100 g^- 1, while saponification and peroxide values were 172.88 ± 2.06 and 1.42 ± 0.04 mg·g^-1 respectively. The implication of the values obtained, particularly those for the chemical properties, as they concern the potential application of NSO as a preservative for ligno-eellulose, is likely that it may be useful in this regard since the values may support some of the documented anti-microbial properties of the oil, although other physical and chemical properties that may affect this potential are recommended for investigations. Conclusions and other recommendations follow in line with the results of the study.
文摘[Objective] This study aimed to explore the relationship between contents of heavy metals with soil type, altitude distribution as well as physical and chemical properties. [Method] Based on determination of contents of soil heavy metals and soil physical and chemical properties from agricultural land in Central Yunnan Province, the relationship between soil heavy metals with soil type, altitude distribu- tion and soil physical and chemical properties were analyzed. [Result] The average contents of all heavy metals in farmland of Central Yunnan didn't extend their limits of Grade II in the National Soil Environmental Quality Standard (GB15618-1995). and the heavy metals content in red soil was higher than that in other types. Soil Cd content changes slightly with the altitude, while contents of other heavy metals were greatly affected by altitude. There were extremely significant positive correlation between heavy metals and clay particle content, that is, soil with heavier texture has more heavy metals. There was positive correlation between pH and each heavy metal content; there were positive correlation between Mn with Pb, Cd, Hg and Hg; exchangeable Ca and Mg contents in soil show negative correlations with most heavy metals. [Conclusion] This study has provided scientific bases for the heavy metal management in Central Yunnan area.
基金Supported by the National Key Science&Technology Projects during 13th Five-Year Plan(2016ZX05053-003)Young Scholars Development fund of SWPU(201499010121)
文摘It has been known that the productivity of artesian wells is strongly dependent on the rheological properties of crude oils. This work targets two deep artesian wells(>5000 m) that are producing heavy crude oil. The impacts of well conditions including temperature, pressure and shear rate, on the crude oil rheology were comprehensively investigated and correlated using several empirical rheological models. The experimental data indicate that this heavy oil is very sensitive to temperature as result of microstructure change caused by hydrogen bonding. The rheological behavior of the heavy oil is also significantly impacted by the imposed pressure, i.e., the viscosity flow activation energy(Eμ) gently increases with the increasing pressure. The viscosity–shear rate data are well fitted to the power law model at low temperature. However, due to the transition of fluid feature at high temperature(Newtonian fluid), the measured viscosity was found to slightly deviate from the fitting data. Combining the evaluated correlations, the viscosity profile of the heavy crude oil in these two deep artesian wells as a function of well depth was predicted using the oilfield producing data.
基金Supported by the China National Science and Technology Major Project(2016ZX05012-002).
文摘To improve the oil recovery and economic efficiency in heavy oil reservoirs in late steam flooding,taking J6 Block of Xinjiang Oilfield as the research object,3D physical modeling experiments of steam flooding,CO2-foam assisted steam flooding,and CO2 assisted steam flooding under different perforation conditions are conducted,and CO2-assisted steam flooding is proposed for reservoirs in the late stage of steam flooding.The experimental results show that after adjusting the perforation in late steam flooding,the CO2 assisted steam flooding formed a lateral expansion of the steam chamber in the middle and lower parts of the injection well and a development mode for the production of overriding gravity oil drainage in the top chamber of the production well;high temperature water,oil,and CO2 formed stable low-viscosity quasi-single-phase emulsified fluid;and CO2 acted as a thermal insulation in the steam chamber at the top,reduced the steam partial pressure inside the steam chamber,and effectively improved the heat efficiency of injected steam.Based on the three-dimensional physical experiments and the developed situation of the J6 block in Xinjiang Oilfield,the CO2 assisted steam flooding for the J6 block was designed.The application showed that the CO2 assisted steam flooding made the oil vapor ratio increase from 0.12 to 0.16 by 34.0%,the oil recovery increase from 16.1%to 21.5%,and the final oil recovery goes up to 66.5%compared to steam flooding after perforation adjustment.
文摘This paper reports a field survey undertaken to determine the availability of raw material for palm kernel oil commercial production for industrial applications. Both industrial and artisanal wastes from palm kernel oil production were also surveyed as raw material (palm kernel seeds) for green energy production. Results of the field study show that 22% of palm kernel seeds (which represents tons of waste) resulting from palm oil processing plants are dumped while at the artisanal level, 80% of palm kernel seed waste is dumped. Analysis of field study data show<span>s</span><span> that large amounts of waste palm kernel seeds are available to enable large scale production of palm kernel oil (PKO) for desirable industrial applications in green energy production. The paper also reports on the physical and chemical properties of Cameroon palm kernel oil (PKO). Palm kernel oil was extracted using mechanical press and solvent extraction. The palm kernel oil (PKO) from Cameroon was analyzed by standard physico-chemical methods. Results of the physical measurements show a specific gravity of PKO of 0.92 kg/L, viscosity of 26.03 cSt and at 5.93 cSt at 40<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C and 100<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C respectively, viscosity index of 185, pour point of 20<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, cloud point of 29<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, flash point of 200<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, aniline point of 105<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>F, diesel index of 23, cetane number of 27 and ASTM (American Standards for Testing and Materials) color of less than 2.5. Results of chemical analyses showed an acid val<span>ue of 17.95 mg KOH/g, free fatty <span>acid (FFA) content of 8.98 mg KOH/g, iodine value o</span></span></span><span><span><span>f 2.10</span><span> mg</span></span></span><span> </span><span><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">2</span></sub><span><span style="font-family:Verdana;">/g</span><span style="font-family:Verdana;">, peroxide value of 2.10 meq/kg, ester value of 123.0 mg KOH/g, hydroxyl value of 93.4 mg OH/g, saponification value of 140.95 mg KOH/g and a sulfur content of 0.016% w/v, signifying low sulfur content. Gas chromatography-mass spectrometry (GC-MS) showed the palm kernel oil to be predominantly made up of glycerides of various fatty acids with higher proportions of C12 to C16 fatty acid residues. Cameroon PKO therefore has a broad spectrum of industrial applications by virtue of its rich physical and chemical properties.</span></span></span>
文摘This research presents the evaluation of activated Bentonite material for treatment of used transformer oil. Different properties such as;electrical, physical, chemical and thermal of used transformer oil were meas-ured before and after purification and treatment. Two power transformers were used in this research (6.4: 4.6 MVA, 3 phases, 50 Hz). One of them was filled with purified oil and the other was filled with activated Bentonite treated oil after purification, and then the two power transformers were tested for one year under practical conditions of the operating field. Initial tests have indicated that the use of Activated BENTONITE in the treatment process for the aged transformer oil improved breakdown voltage, water content, total acidi-ty and flash point. Thus activated Bentonite gives an ideal treatment of aged transformer oil with its environmental and economic advantages. Moreover, activated Bentonite is available at many places in Egypt with low costs.
基金Supported by the Comprehensive Scientific Research Project of CNOOC(YXKY-2019-ZY-05)。
文摘Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assisted gravity drain-age(SAGD).Using an ultrasonic base made of polyether ether ketone resin instead of titanium alloy can improve the signal en-ergy and signal-to-noise ratio and get clear first arrival;with the rise of temperature,heavy oil changes from glass state(at-34.4℃),to quasi-solid state,and to liquid state(at 49.0℃)gradually;the quasi-solid heavy oil has significant frequency dis-persion.For the sand sample with high oil saturation,its elastic property depends mainly on the nature of the heavy oil,while for the sand sample with low oil saturation,the elastic property depends on the stiffness of the rock matrix.The elastic property of the oil sand is sensitive to temperature noticeably,when the temperature increases from 10℃ to 175℃,the oil sand samples decrease in compressional and shear wave velocities significantly.Based on the experimental data,the quantita-tive relationship between the compressional wave impedance of the oil sand and temperature was worked out,and the tem-perature variation of the steam chamber in the study area was predicted by time-lapse seismic inversion.
基金A.S.Zongo expresses his gratitude to French Cooperation in Burkina Faso who,through the Service for Cooperation and Cultural Action(SCAC),financed this study by awarding an internship fellowship in 2017 at CIRAD Montpellier.
文摘This work gives tools to overcome the difficulty to determine experimentally physical properties for vegetable oils within the range of temperature typically observed during the injection phase in a diesel engine. Knowing vegetable oils’ physical properties to these ranges of temperature is of fundamental importance when modeling their combustion in diesel engine. However, vegetable oils’ experimental physical properties data are rare in the literature for temperature above 523 K. This paper describes experimental measurements and estimation methods for density, dynamic viscosity, thermal conductivity and heat capacity of vegetable oils for this particular range of temperature. The methodology uses several correlative methods using group contribution approach for each property and compares experimental data with predicted one to select the more accurate model. This work has shown the rapeseed and jatropha oils’ physical properties can be satisfactorily predicted as a function of temperature using group contribution approach.