Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide val...Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide valuable information for developing efficient and safe extraction technology of natural gas hydrates. This study presents comprehensive measurement results and analysis of drilled hydrate-bearing sediments samples recovered from Qiongdongnan Basin in the South China Sea. The results show that the gas hydrate in the core samples is mainly methane hydrate with a methane content of approximately 95%, and the other components are ethane and carbon dioxide. The saturation of the samples fluctuates from 2%–60%, the porosity is approximately 38%–43%, and the water content is approximately 30%–50%, which indicate that high water saturation means that timely drainage should be paid attention to during hydrate extraction. In addition, the median diameter of the sediment samples is mainly distributed in the range of 15 to 34 µm, and attention should be paid to the prevention and control of sand production in the mining process. Moreover, the thermal conductivity is distributed in the range of 0.75 to 0.96 W/(m·K) as measured by the flat plate heat source method. The relatively low thermal conductivity of hydrates at this study site indicates that a combined approach is encouraged for natural gas production technologies. It is also found that clay flakes and fine particles are attached to the surface of large particles in large numbers. Such characteristics will lead to insufficient permeability during the production process.展开更多
For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass co...For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of(K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO3-4was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3 ± 0.8 μm, spread of particle size distribution19 ± 11, particle density 2620 ± 80 kg/m^3 and angle of repose 50°± 1°. The density of the straw fly ashes is lower(2260 ± 80 kg/m^3) and the spread of the size distribution is higher(72 ± 24).For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller,surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. U19B2005).
文摘Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide valuable information for developing efficient and safe extraction technology of natural gas hydrates. This study presents comprehensive measurement results and analysis of drilled hydrate-bearing sediments samples recovered from Qiongdongnan Basin in the South China Sea. The results show that the gas hydrate in the core samples is mainly methane hydrate with a methane content of approximately 95%, and the other components are ethane and carbon dioxide. The saturation of the samples fluctuates from 2%–60%, the porosity is approximately 38%–43%, and the water content is approximately 30%–50%, which indicate that high water saturation means that timely drainage should be paid attention to during hydrate extraction. In addition, the median diameter of the sediment samples is mainly distributed in the range of 15 to 34 µm, and attention should be paid to the prevention and control of sand production in the mining process. Moreover, the thermal conductivity is distributed in the range of 0.75 to 0.96 W/(m·K) as measured by the flat plate heat source method. The relatively low thermal conductivity of hydrates at this study site indicates that a combined approach is encouraged for natural gas production technologies. It is also found that clay flakes and fine particles are attached to the surface of large particles in large numbers. Such characteristics will lead to insufficient permeability during the production process.
文摘For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of(K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO3-4was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3 ± 0.8 μm, spread of particle size distribution19 ± 11, particle density 2620 ± 80 kg/m^3 and angle of repose 50°± 1°. The density of the straw fly ashes is lower(2260 ± 80 kg/m^3) and the spread of the size distribution is higher(72 ± 24).For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller,surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress.