Cancer has nowadays become one of the leading causes of death worldwide.Conventional anticancer approaches are associated with different limitations.Therefore,innovative methodologies are being investigated,and severa...Cancer has nowadays become one of the leading causes of death worldwide.Conventional anticancer approaches are associated with different limitations.Therefore,innovative methodologies are being investigated,and several researchers propose the use of remotely activated nanoparticles to trigger cancer cell death.The idea is to conjugate two different components,i.e.,an external physical input and nanoparticles.Both are given in a harmless dose that once combined together act synergistically to therapeutically treat the cell or tissue of interest,thus also limiting the negative outcomes for the surrounding tissues.Tuning both the properties of the nanomaterial and the involved triggering stimulus,it is possible furthermore to achieve not only a therapeutic effect,but also a powerful platform for imaging at the same time,obtaining a nano-theranostic application.In the present review,we highlight the role of nanoparticles as therapeutic or theranostic tools,thus excluding the cases where a molecular drug is activated.We thus present many examples where the highly cytotoxic power only derives from the active interaction between different physical inputs and nanoparticles.We perform a special focus on mechanical waves responding nanoparticles,in which remotely activated nanoparticles directly become therapeutic agents without the need of the administration of chemotherapeutics or sonosensitizing drugs.展开更多
Increasing evidence shows that magnetic fields and magnetic responsive scaffolds can play unique roles in promoting bone repair and regeneration. This article addresses the synergistic effects of magnetic scaffolds in...Increasing evidence shows that magnetic fields and magnetic responsive scaffolds can play unique roles in promoting bone repair and regeneration. This article addresses the synergistic effects of magnetic scaffolds in response to external magnetic fields on the bone regeneration in situ. Additionally, the exploration of using magnetic scaffolds as tools in the bone implant fixation, local drug delivery and mimicking microenvironment of stem cell differentiation are introduced. We also discussed possible underlying mechanisms and perspectives of magnetic responsive scaffolds in the bone repair and regeneration.展开更多
基金the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(Grant Agreement No 678151-Project Acronym“TROJANANOHORSE”-ERC starting Grant)the Politecnico di Torino and the Moschini Spa Company through a seed funding of Proof-of-Concept Grant No.16417.
文摘Cancer has nowadays become one of the leading causes of death worldwide.Conventional anticancer approaches are associated with different limitations.Therefore,innovative methodologies are being investigated,and several researchers propose the use of remotely activated nanoparticles to trigger cancer cell death.The idea is to conjugate two different components,i.e.,an external physical input and nanoparticles.Both are given in a harmless dose that once combined together act synergistically to therapeutically treat the cell or tissue of interest,thus also limiting the negative outcomes for the surrounding tissues.Tuning both the properties of the nanomaterial and the involved triggering stimulus,it is possible furthermore to achieve not only a therapeutic effect,but also a powerful platform for imaging at the same time,obtaining a nano-theranostic application.In the present review,we highlight the role of nanoparticles as therapeutic or theranostic tools,thus excluding the cases where a molecular drug is activated.We thus present many examples where the highly cytotoxic power only derives from the active interaction between different physical inputs and nanoparticles.We perform a special focus on mechanical waves responding nanoparticles,in which remotely activated nanoparticles directly become therapeutic agents without the need of the administration of chemotherapeutics or sonosensitizing drugs.
文摘Increasing evidence shows that magnetic fields and magnetic responsive scaffolds can play unique roles in promoting bone repair and regeneration. This article addresses the synergistic effects of magnetic scaffolds in response to external magnetic fields on the bone regeneration in situ. Additionally, the exploration of using magnetic scaffolds as tools in the bone implant fixation, local drug delivery and mimicking microenvironment of stem cell differentiation are introduced. We also discussed possible underlying mechanisms and perspectives of magnetic responsive scaffolds in the bone repair and regeneration.