mole fraction) yttria-stabilized zirconia electrolyte thin wall tubes were p repared by i mproved slip casting method. The length and wall thickness of the tubes are 266 mm and 0.4~0.9 mm, respectively and the relat...mole fraction) yttria-stabilized zirconia electrolyte thin wall tubes were p repared by i mproved slip casting method. The length and wall thickness of the tubes are 266 mm and 0.4~0.9 mm, respectively and the relative density is 96.7%. The microstr ucture and electrical properties of samples sintered at different temperatures w ere studied using SEM and ac impedance spectroscopy. The effect of sintered dens ity, grain and grain boundary on the electrical properties of the samples was analyzed. The research results show that the density of the samples increase s gradually with increasing sintering temperatures. The microstructure of sample s strongly influences its electrical properties, and the electrical properti es of samples enhance with the increase of sintered density. The ionic conductiv ity of grain and grain boundary is increased as the sintering temperature incre ases. Better sinterability of the samples was obtained at the sintering temperat ure of 1650 ℃. The maximum open circuit voltage and short circuit current for s ingle cell is 0.946 V and 1.84 A, respectively. The maximum output power of sing le cell is 0.46 W at the temperature of 850 ℃.展开更多
Comparing to some other fibers,the mechanical andsome physical properties of banana fiber,constituent ofbanana fiber have been studied in this paper,mean-while,for improving some characteristics of banana fi-ber,the c...Comparing to some other fibers,the mechanical andsome physical properties of banana fiber,constituent ofbanana fiber have been studied in this paper,mean-while,for improving some characteristics of banana fi-ber,the chemical treatments were used to modify the fi-ber.The results show that the coarse and brittle bananafiber,will be difficult to process in traditional spinningsystem.展开更多
This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanni...This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micro- graphs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with in- creases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.展开更多
Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prep...Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spec- troscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases.展开更多
文摘mole fraction) yttria-stabilized zirconia electrolyte thin wall tubes were p repared by i mproved slip casting method. The length and wall thickness of the tubes are 266 mm and 0.4~0.9 mm, respectively and the relative density is 96.7%. The microstr ucture and electrical properties of samples sintered at different temperatures w ere studied using SEM and ac impedance spectroscopy. The effect of sintered dens ity, grain and grain boundary on the electrical properties of the samples was analyzed. The research results show that the density of the samples increase s gradually with increasing sintering temperatures. The microstructure of sample s strongly influences its electrical properties, and the electrical properti es of samples enhance with the increase of sintered density. The ionic conductiv ity of grain and grain boundary is increased as the sintering temperature incre ases. Better sinterability of the samples was obtained at the sintering temperat ure of 1650 ℃. The maximum open circuit voltage and short circuit current for s ingle cell is 0.946 V and 1.84 A, respectively. The maximum output power of sing le cell is 0.46 W at the temperature of 850 ℃.
文摘Comparing to some other fibers,the mechanical andsome physical properties of banana fiber,constituent ofbanana fiber have been studied in this paper,mean-while,for improving some characteristics of banana fi-ber,the chemical treatments were used to modify the fi-ber.The results show that the coarse and brittle bananafiber,will be difficult to process in traditional spinningsystem.
基金financially supported by the National Natural Science Foundation of China (No. 51405467)the Research Fund for Scientific and Technological Projects of Chongqing (Nos. 2012ggB 40003 and cstc2013yykfC 00006)
文摘This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micro- graphs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with in- creases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.
基金Project supported by the National Natural Science Foundation of China(Grant No.61235011)the Science Foundation of the Science and Technology Commission of Tianjin Municipality,China(Grant Nos.13JCYBJC17300 and 12JCQNIC01200)
文摘Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spec- troscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases.