The study was conducted on the status of the quality of wastewater from the tailings dam of Central Africa Gold Limited in Bibiani, Ghana, to ascertain the level of contamination of the wastewater. The tailings dam st...The study was conducted on the status of the quality of wastewater from the tailings dam of Central Africa Gold Limited in Bibiani, Ghana, to ascertain the level of contamination of the wastewater. The tailings dam stores process effluent from the gold extraction plant. Wastewater samples taken from the tailings dam were analyzed for physico-chemical characteristics. Arsenic, iron and cyanide were identified as the major pollutants in the tailings dam wastewater with average concentrations of 4.5, 25.2 and 11.1 mg.L1, respectively. Arsenic, iron and free CN (cyanide) concentrations in the process effluent exceeded the Ghana EPA discharge limits of 0.2, 2 and 0.2 mg.Ll, respectively. High conductivity, total dissolved solids, sulphate and ammonium were found in the wastewater studied. The tailings dam serves as a natural reservoir that removes most of the total suspended solids and the turbidity, resulting in the improvement in the aesthetic appeal of the wastewater. Nonetheless, arsenic, iron and cyanide concentrations were still high and hence the wastewater cannot be discharged into the environment without prior treatment.展开更多
The main aim of this research is to evaluate the water quality of King Abdullah Canal (KAC) using the water quality index method (WQI). For this purpose, nine different sampling sites were used in the calculation of W...The main aim of this research is to evaluate the water quality of King Abdullah Canal (KAC) using the water quality index method (WQI). For this purpose, nine different sampling sites were used in the calculation of WQI during the period of January to December 2012. The samples were analyzed for various physico-chemical parameters such as pH, electrical conductivity, total suspended solids, ions of Sodium, Potassium, Calcium, Magnesium, Fluorite, Chloride, Sulfate, Bicarbonate, and Nitrate in different seasons (winter, spring, summer and autumn). The analyzed results (by WQI method) have been used to suggest models for predicting water quality. The relative weight assigned to each parameter has a range from 1 to 5, based on the important parameters for drinking purposes. The computed WQI for the nine samples has a range from 46.66 to 542.08. The analysis reveals that the water quality status of the study area is varying from excellent to good in the upper part of the canal and from poor to very poor in the lower part of the canal. Comparing with the World Health Organization (WHO) and Jordan Standard (JS), the results indicate that the lower part of the canal is polluted. Therefore, the water is not safe for domestic use and needs further treatment, especially in the lower part of the canal.展开更多
Water quality of Rosetta Branch may be changed by several factors in the last decades as a result of anthropogenic activities. So, it’s important to study the physicochemical characteristics of both water and sedimen...Water quality of Rosetta Branch may be changed by several factors in the last decades as a result of anthropogenic activities. So, it’s important to study the physicochemical characteristics of both water and sediment in the Rosetta Branch. Two identified sources are the main origin of most pollutants in this branch, namely: El-Rahawy drain and industrial activities in Kafr El-Zayat city. From the data of water quality index (WQI) based on six important parameters (pH, T °C, DO, BOD, COD and TP), it indicates that site 2 (from Kom Hamada to Edfina) is more polluted than the other two sites (from El-Qanater El-Khairia to Kom Hamada and from Edfina to Rosetta). The concentrations of heavy metals increase in sites that are more affected by drainage water from different drains. Great efforts are needed and wastewater must be treated before draining it into the River Nile water.展开更多
Beverage industries are one of the most polluting industries producing huge amount of wastewater effluents. These industries have been recognized to cause pollution by discharging effluent into receiving environment e...Beverage industries are one of the most polluting industries producing huge amount of wastewater effluents. These industries have been recognized to cause pollution by discharging effluent into receiving environment especially to the nearby rivers. The aim of this study is to determine the status of waste water effluent discharge of beverage industry in Ethiopia. Samples were collected from 8 beverage industries’ wastewater effluent discharge end pipe and examined for different physico-Chemical parameters such as: COD, BOD5, TSS, ammonia, total nitrogen, PH and phosphate. The observed values were ranged between 9 - 397.5 mg/L for TSS, 0.185 - 69.7 mg/l for phosphate, 0.265 - 71 mg/l for ammonia, 226 - 1975 mg/l for COD, 15 - 576 mg/L for BOD, 4 - 86.6 mg/l for total nitrogen and 5.21 - 12.37 for PH. The finding of the study revealed that most of the beverage industries were extremely high amount of total suspended solids (TSS), BOD and COD effluent discharge were found above the Ethiopian beverage industry effluent discharge limit value. Half of the sampled beverage industries’ effluent discharge of PH, total nitrogen, ammonia and phosphate were found within the limit value while the rest of the industries are still discharging their effluent above the national standard limit value. The continuous discharge of effluents into rivers without any additional treatment raises the level of pollution and toxicity, which have significantly adverse impact on the aquatic environment.展开更多
The physico-chemical characteristics of ten permanently flowing rivers from Kahuzi Biega National Park (Democratic Republic of Congo) were examined in July 2007. Water samples were collected from ten sites between 180...The physico-chemical characteristics of ten permanently flowing rivers from Kahuzi Biega National Park (Democratic Republic of Congo) were examined in July 2007. Water samples were collected from ten sites between 1800 and 3200 m asl and analyzed for the following chemical parameters: biological oxygen demand, total and carbonate hardness, alkalinity, total phosphorus, nitrogen, nitrate, and ammonia. Discharge, current velocity, temperature, and oxygen saturation were analyzed on site. In general, the chemical parameters revealed relatively low concentrations compared to others rivers in the region. The rivers were cold (10℃ - 15℃), well oxygenated, had low conductivity (generally <100 μS/cm), and had pH values ranging between 5.5 and 7.6. Nitrogen and phosphorus were also low (0.086 - 0.25 μmol/L for phosphorus and 2.21 - 4.25 μmol/L for nitrogen) in all rivers. The main natural sources of nitrogen and other nutriaents are from rain and atmospheric deposition, organic matter decomposition, and fixation of molecular nitrogen from allochthonous inorganic material. In the forested rivers of Kahuzi-Biega National Park the terrestrial and riparian environments are the only sources of nitrogen and phosphorus to the river water.展开更多
The industrial chemistry of oils and fats is a mature technology, with decades of experience and refinement behind current practices, therefore some physico-chemical characteristics of eleven vegetable oils sunflower ...The industrial chemistry of oils and fats is a mature technology, with decades of experience and refinement behind current practices, therefore some physico-chemical characteristics of eleven vegetable oils sunflower oil (four different manufacturing companies), olive oil (three different manufacturing companies), corn oil, castor oil, coconut oil and canola oil in Iraqi Kurdistan region (Hawler city center) have been evaluated according to association of official analytical chemists (AOAC) (1995) official methods. The refractive index, viscosity, acid value, peroxide value, pH values, and values of specific gravity of the vegetable oil samples were measured at various different conditions. The results showed that some of the oil samples have unacceptable values in comparison with the standards.展开更多
The coastal sedimentary basin in southern Benin consists of monoclinal layers divided into two plateau zones (North and South) which are separated by a longitudinal depression ESE-WNW. The valleys of the main N-S-orie...The coastal sedimentary basin in southern Benin consists of monoclinal layers divided into two plateau zones (North and South) which are separated by a longitudinal depression ESE-WNW. The valleys of the main N-S-oriented rivers (Ouémé, Couffo and Mono) set the bondaries of the different plateau of the BSC (Coastal Sedimentary Basin). The present study, based on geology, hydrochemistry, temperature and log data available on boreholes, makes a physico-chemical characterization of the waters of the gushing aquifers of the coastal sedimentary basin of Benin. The gushing water boreholes are shared between the valleys of the main rivers of the BSC. Some of these boreholes are </span><span style="font-family:Verdana;">thermal with a water temperature between 38 and 69 degrees Celsius. The</span><span style="font-family:Verdana;"> hydrogeological correlations established in the BSC in accordance to the North-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">South direction in the valleys of the main streams (Couffo and Ouémé) reveal that the captured aquifers are sands, marls and limestones that respond either </span><span style="font-family:Verdana;">in major discordance (northern zone) or above the sedimentation gaps</span><span style="font-family:Verdana;"> (southern zone). Chemical analyses have shown that gushing thermal waters are mineralized in the south with a neutral to basic pH and are highly concentrated with bicarbonate, calcium and magnesium ions. In the North, on the other hand, thermal waters are acidic with a pH ranging from 4.8 to 5.9. The acidic nature of the northern waters is influenced by the crystalline base while the southern neutral to basic waters are influenced by the lithological nature (limestone and marl) of the aquifer. The random distribution of thermal water boreholes in the valleys of the main BSC streams is believed to be related to tectonic events.展开更多
The study is focused on the post impact of oil spill contamination of groundwater in Bassambiri Nembe Bayelsa State. Groundwater samples were sampled from hand dug wells from eight stations including the control point...The study is focused on the post impact of oil spill contamination of groundwater in Bassambiri Nembe Bayelsa State. Groundwater samples were sampled from hand dug wells from eight stations including the control point for physico-chemical investigation using sterilized glass bottles. Standard methods were used for the analyses. The result of physico-chemical parameters analyzed shows that the values of the groundwater pH ranged between 5.90 - 6.35, electrical conductivity between 80.39 - 89.23 μS/cm, Salinity 23.3 - 28.69 mg/l, Turbidity 1.71 - 3.84 NTU, Biochemical Oxygen Demand (BOD) 1.12 - 1.36 mg/l, Alkalinity 8.56 - 12.12 mg/l, Total Hardness 11.8 - 14.47 mg/l and Temperature 26.1℃ - 27.3℃. Analysis of cations shows that Na ranged from 7.38 - 10.34 mg/l, K 0.26 - 0.49 mg/l, Calcium ion levels 2.56 - 3.59 mg/l and Mg 0.88 mg/l - 1.23 mg/l. The anions showed Potassium ion levels ranged from 0.01 mg/l - 0.02 mg/l, Chloride ion levels 12.29 mg/l - 15.88 mg/l, Fluoride ion levels 0.01 mg/l and Nitrates from 0.27 mg/l - 0.48 mg/l. Total Heterotopic Fungi population ranged from 15.26 - 48.55 Coliform Forming units/ml. The maximum permissible value of total coliforms in drinking water was exceeded. However, the Total Hydrocarbon Concentration (THC) across the groundwater sample points was less than 0.01 mg/l. The concentration of PAH and BTEX was 0.01 mg/l across the study area. The heavy metal concentrations in the groundwater samples were negligible with levels of 0.01 mg/l observed in the study area except for iron ranging from 0.20 - 0.56 mg/l levels above the WHO permissible limit. The physico-chemical parameters of groundwater indicate that they fall below WHO permissible limits. The cations and anions concentration indicate a stable and healthy water system which is relatively good. The groundwater system has high levels of iron in groundwater and bacterial contamination. Treatment is required to avoid acute and chronic iron overload resulting from consumption from drinking groundwater within the study area.展开更多
BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie...BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.展开更多
Ten most popular brands of commercial Turkish set-type yoghurts were collected from local retail outlets in Hatay, Turkey for two separate periods, and analyzed for basic nutrients, physico-chemical properties, volati...Ten most popular brands of commercial Turkish set-type yoghurts were collected from local retail outlets in Hatay, Turkey for two separate periods, and analyzed for basic nutrients, physico-chemical properties, volatile aroma compounds and free fatty acid profiles to compare their differences among the yoghurt products. The results showed that there were significant differences (P<0.05, 0.01, or 0.001) and variations in physico-chemical indices, volatile aroma compounds and volatile free fatty acid profiles among the yoghurt brands, which ultimately influence the flavor quality of the product. Acetaldehyde was predominant volatile compound in yoghurts, which followed by acetone, acetoin, diacetyl and ethanol. The level of diacetly was inversely related to titratable acidity, acetaldehyde and ethanoic acid. From ketones with high carbones 2-undecanone and 2-pentadecanone were higher than 2-butanone, 2-nanonane and 2-tridecanone. These ketones are related to fat content of yoghurt. Among short chain free fatty acids, ethanoic (acetic) acid was the most abundant in yoghurts, followed by hexanoic, octanoic and butanoic acids. These differences in detected chemical compositions of volatile compounds and free fatty acids would be applicable to predict flavor, nutritional value, quality control or shelf-life of the commmercial set-type Turkish yoghurts.展开更多
The deterioration of water quality in lakes constitutes an environmental problem faced by humanity. The Nkolbisson artificial lake which is located downstream of the Abiergue and Mintotomo streams in Yaounde is under ...The deterioration of water quality in lakes constitutes an environmental problem faced by humanity. The Nkolbisson artificial lake which is located downstream of the Abiergue and Mintotomo streams in Yaounde is under the influence of various forms of pollution, mostly resulting from human activities. There is proliferation of algae on the lake surface that consumes the available oxygen in the lake. The main objective of the current study is to evaluate the different forms of pollutants in the lake, in order to propose efficient solutions for a suitable management strategy, basing on the physico-chemical and biological analysis. The lake retains an average of 2535.49 tons/year of suspended solids in the rainy season and 1438.05 tons/year in the dry season. The range of dissolved oxygen (5.2 - 3.8 mg/l);pH (7.8 - 6.8);temperature (23.9°C - 23.1°C);electrical conductivity (266.1 - 87.3 μS/cm);turbidity (22.3 - 10 UNT);suspended solid (240 - 40 mg/l);BOD (55 - 8 mg/l);COD (76 - 87.3 mg/l). Biologically, faecal coliforms fluctuates between (42 × 102 - 425 × 103 FCU/100 ml), faecal streptococci (8 × 103 - 158 × 103 FCU/100 ml) and total Coliform (15 × 103 - 78 × 106 FCU/100 ml) evidence that, the studied lake is highly polluted. Consequently the lake retains an average of 2888.7 tons/year of suspended matter.展开更多
The river water and groundwater from Lagbe town in Benin Republic were collected and analyzed for physical, chemical and microbiological parameters. The surface water samples were treated with alum, Moringa oleifera s...The river water and groundwater from Lagbe town in Benin Republic were collected and analyzed for physical, chemical and microbiological parameters. The surface water samples were treated with alum, Moringa oleifera seeds powder and the combination of alum and Moringa oleifera seeds. The jar-test essays were carried out with two water samples at initial turbidities 7.2 NTU and 14.4 NTU. The water samples analyzed are fairly mineralized (conductivity varies between 166 and 687 μS/cm), enough soft and contain the nitrate (104 mg/L for W4 sample). They are greatly polluted by pathogenic microorganisms such as Escherichia coli, Klebsiella, Enterococcus, Vibrio, Serratia. The optimal dosages of Moringa are 96 mg/L and 80 mg/L respectively. We have observed a reduction of 60% of turbidity and a substantial remove of all pathogenic microorganisms after water treatment with Moringa oleifera seeds. For the combination treatment, 93% of initial turbidity and 92% of initial concentration of organic matter in the sample E2 were eliminated. The pH remained almost constant during the treatment.展开更多
The aim of this study was to optimize composite breads of wheat and whole millet flour by the use of natural improvers. Three types of local malted cereals were used as natural improvers. The millet flour was fermente...The aim of this study was to optimize composite breads of wheat and whole millet flour by the use of natural improvers. Three types of local malted cereals were used as natural improvers. The millet flour was fermented with EPSs producing LAB strain prior to use. The technological characteristics of the composite flours were determined using an alveograph. The physico-chemical and nutritional characteristics of the composite breads were determined using standard methods and their sensory profiles were evaluated by a panel of 35 consumers. The alveograph results showed an increase in dough resistance, deformation and a decrease in extensibility and elasticity with the level of incorporation of millet flour. From the results of physico-chemical analyses of composite breads, no significant difference (p > 0.05) was observed in the use of the three types of local cereal malts except for the incorporation of 50% of the millet flour. The control sample presented the lowest acidity and dry matter value, the highest water content and pH value. No significant difference (p > 0.05) was observed in the use of the three types of cereal malts for the macronutrient contents of the composite bread samples. However, differences were observed according to the levels of incorporation. Macronutrients results showed an increase in protein content (11.17% ± 0.28% - 14.01% ± 0.10%/DM);crude fat content (1.86% ± 0.05% - 2.48% ± 0.20%/DM) and a decrease in carbohydrates content (85.36% ± 0.54% - 81.06% ± 0.36%/ DM). Regarding the content of mineral elements, significant differences (p < 0.05) were observed in the use of the three types of cereal malts for the incorporation of 15% (Mg and Fe content), 30% (Fe, Zn and K) and 50% (content of Zn, K, Na and Mg) of millet flour. The free amino acid profile revealed three essential amino acids such as valine, isoleucine and lysine. Breads incorporated with 30% of whole millet flour were the most appreciated by consumers.展开更多
The present study aims to explore the physico-chemical structure evolution characteristic during Yangchangwan bituminous coal(YCW)gasification in the presence of iron-based waste catalyst(IWC).The catalytic gasificati...The present study aims to explore the physico-chemical structure evolution characteristic during Yangchangwan bituminous coal(YCW)gasification in the presence of iron-based waste catalyst(IWC).The catalytic gasification reactivity of YCW was measured by thermogravimetric analyzer.Scanning electron microscope–energy dispersive system,nitrogen adsorption analyzer and laser Raman spectroscopy were employed to analyze the char physico-chemical properties.The results show that the optimal IWC loading ratio was 5 wt%at 1000°C.The distribution of IWC on char was uneven and Fe catalyst concentrated on the surface of some chars.The specific surface area of YCW gasified semi-char decreased significantly with the increase of gasification time.i.e.,the specific surface area reduced from 382 m2/g(0 min)to 192 m2/g(3 min),meanwhile,the number of micropores and mesopores decreased sharply at the late gasification stage.The carbon microcrystalline structure of YCW gasified semi-char was gradually destroyed with the increase of gasification time,and the microcrystalline structure with small size was gradually generated,resulting in the decreasing order degree of carbon microcrystalline structure.IWC can catalyze YCW gasification which could provide theoretical guidance for industrial solid waste recycling.展开更多
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and de...Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distin...BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of...Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.展开更多
To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system...To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.展开更多
文摘The study was conducted on the status of the quality of wastewater from the tailings dam of Central Africa Gold Limited in Bibiani, Ghana, to ascertain the level of contamination of the wastewater. The tailings dam stores process effluent from the gold extraction plant. Wastewater samples taken from the tailings dam were analyzed for physico-chemical characteristics. Arsenic, iron and cyanide were identified as the major pollutants in the tailings dam wastewater with average concentrations of 4.5, 25.2 and 11.1 mg.L1, respectively. Arsenic, iron and free CN (cyanide) concentrations in the process effluent exceeded the Ghana EPA discharge limits of 0.2, 2 and 0.2 mg.Ll, respectively. High conductivity, total dissolved solids, sulphate and ammonium were found in the wastewater studied. The tailings dam serves as a natural reservoir that removes most of the total suspended solids and the turbidity, resulting in the improvement in the aesthetic appeal of the wastewater. Nonetheless, arsenic, iron and cyanide concentrations were still high and hence the wastewater cannot be discharged into the environment without prior treatment.
文摘The main aim of this research is to evaluate the water quality of King Abdullah Canal (KAC) using the water quality index method (WQI). For this purpose, nine different sampling sites were used in the calculation of WQI during the period of January to December 2012. The samples were analyzed for various physico-chemical parameters such as pH, electrical conductivity, total suspended solids, ions of Sodium, Potassium, Calcium, Magnesium, Fluorite, Chloride, Sulfate, Bicarbonate, and Nitrate in different seasons (winter, spring, summer and autumn). The analyzed results (by WQI method) have been used to suggest models for predicting water quality. The relative weight assigned to each parameter has a range from 1 to 5, based on the important parameters for drinking purposes. The computed WQI for the nine samples has a range from 46.66 to 542.08. The analysis reveals that the water quality status of the study area is varying from excellent to good in the upper part of the canal and from poor to very poor in the lower part of the canal. Comparing with the World Health Organization (WHO) and Jordan Standard (JS), the results indicate that the lower part of the canal is polluted. Therefore, the water is not safe for domestic use and needs further treatment, especially in the lower part of the canal.
文摘Water quality of Rosetta Branch may be changed by several factors in the last decades as a result of anthropogenic activities. So, it’s important to study the physicochemical characteristics of both water and sediment in the Rosetta Branch. Two identified sources are the main origin of most pollutants in this branch, namely: El-Rahawy drain and industrial activities in Kafr El-Zayat city. From the data of water quality index (WQI) based on six important parameters (pH, T °C, DO, BOD, COD and TP), it indicates that site 2 (from Kom Hamada to Edfina) is more polluted than the other two sites (from El-Qanater El-Khairia to Kom Hamada and from Edfina to Rosetta). The concentrations of heavy metals increase in sites that are more affected by drainage water from different drains. Great efforts are needed and wastewater must be treated before draining it into the River Nile water.
文摘Beverage industries are one of the most polluting industries producing huge amount of wastewater effluents. These industries have been recognized to cause pollution by discharging effluent into receiving environment especially to the nearby rivers. The aim of this study is to determine the status of waste water effluent discharge of beverage industry in Ethiopia. Samples were collected from 8 beverage industries’ wastewater effluent discharge end pipe and examined for different physico-Chemical parameters such as: COD, BOD5, TSS, ammonia, total nitrogen, PH and phosphate. The observed values were ranged between 9 - 397.5 mg/L for TSS, 0.185 - 69.7 mg/l for phosphate, 0.265 - 71 mg/l for ammonia, 226 - 1975 mg/l for COD, 15 - 576 mg/L for BOD, 4 - 86.6 mg/l for total nitrogen and 5.21 - 12.37 for PH. The finding of the study revealed that most of the beverage industries were extremely high amount of total suspended solids (TSS), BOD and COD effluent discharge were found above the Ethiopian beverage industry effluent discharge limit value. Half of the sampled beverage industries’ effluent discharge of PH, total nitrogen, ammonia and phosphate were found within the limit value while the rest of the industries are still discharging their effluent above the national standard limit value. The continuous discharge of effluents into rivers without any additional treatment raises the level of pollution and toxicity, which have significantly adverse impact on the aquatic environment.
文摘The physico-chemical characteristics of ten permanently flowing rivers from Kahuzi Biega National Park (Democratic Republic of Congo) were examined in July 2007. Water samples were collected from ten sites between 1800 and 3200 m asl and analyzed for the following chemical parameters: biological oxygen demand, total and carbonate hardness, alkalinity, total phosphorus, nitrogen, nitrate, and ammonia. Discharge, current velocity, temperature, and oxygen saturation were analyzed on site. In general, the chemical parameters revealed relatively low concentrations compared to others rivers in the region. The rivers were cold (10℃ - 15℃), well oxygenated, had low conductivity (generally <100 μS/cm), and had pH values ranging between 5.5 and 7.6. Nitrogen and phosphorus were also low (0.086 - 0.25 μmol/L for phosphorus and 2.21 - 4.25 μmol/L for nitrogen) in all rivers. The main natural sources of nitrogen and other nutriaents are from rain and atmospheric deposition, organic matter decomposition, and fixation of molecular nitrogen from allochthonous inorganic material. In the forested rivers of Kahuzi-Biega National Park the terrestrial and riparian environments are the only sources of nitrogen and phosphorus to the river water.
文摘The industrial chemistry of oils and fats is a mature technology, with decades of experience and refinement behind current practices, therefore some physico-chemical characteristics of eleven vegetable oils sunflower oil (four different manufacturing companies), olive oil (three different manufacturing companies), corn oil, castor oil, coconut oil and canola oil in Iraqi Kurdistan region (Hawler city center) have been evaluated according to association of official analytical chemists (AOAC) (1995) official methods. The refractive index, viscosity, acid value, peroxide value, pH values, and values of specific gravity of the vegetable oil samples were measured at various different conditions. The results showed that some of the oil samples have unacceptable values in comparison with the standards.
文摘The coastal sedimentary basin in southern Benin consists of monoclinal layers divided into two plateau zones (North and South) which are separated by a longitudinal depression ESE-WNW. The valleys of the main N-S-oriented rivers (Ouémé, Couffo and Mono) set the bondaries of the different plateau of the BSC (Coastal Sedimentary Basin). The present study, based on geology, hydrochemistry, temperature and log data available on boreholes, makes a physico-chemical characterization of the waters of the gushing aquifers of the coastal sedimentary basin of Benin. The gushing water boreholes are shared between the valleys of the main rivers of the BSC. Some of these boreholes are </span><span style="font-family:Verdana;">thermal with a water temperature between 38 and 69 degrees Celsius. The</span><span style="font-family:Verdana;"> hydrogeological correlations established in the BSC in accordance to the North-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">South direction in the valleys of the main streams (Couffo and Ouémé) reveal that the captured aquifers are sands, marls and limestones that respond either </span><span style="font-family:Verdana;">in major discordance (northern zone) or above the sedimentation gaps</span><span style="font-family:Verdana;"> (southern zone). Chemical analyses have shown that gushing thermal waters are mineralized in the south with a neutral to basic pH and are highly concentrated with bicarbonate, calcium and magnesium ions. In the North, on the other hand, thermal waters are acidic with a pH ranging from 4.8 to 5.9. The acidic nature of the northern waters is influenced by the crystalline base while the southern neutral to basic waters are influenced by the lithological nature (limestone and marl) of the aquifer. The random distribution of thermal water boreholes in the valleys of the main BSC streams is believed to be related to tectonic events.
文摘The study is focused on the post impact of oil spill contamination of groundwater in Bassambiri Nembe Bayelsa State. Groundwater samples were sampled from hand dug wells from eight stations including the control point for physico-chemical investigation using sterilized glass bottles. Standard methods were used for the analyses. The result of physico-chemical parameters analyzed shows that the values of the groundwater pH ranged between 5.90 - 6.35, electrical conductivity between 80.39 - 89.23 μS/cm, Salinity 23.3 - 28.69 mg/l, Turbidity 1.71 - 3.84 NTU, Biochemical Oxygen Demand (BOD) 1.12 - 1.36 mg/l, Alkalinity 8.56 - 12.12 mg/l, Total Hardness 11.8 - 14.47 mg/l and Temperature 26.1℃ - 27.3℃. Analysis of cations shows that Na ranged from 7.38 - 10.34 mg/l, K 0.26 - 0.49 mg/l, Calcium ion levels 2.56 - 3.59 mg/l and Mg 0.88 mg/l - 1.23 mg/l. The anions showed Potassium ion levels ranged from 0.01 mg/l - 0.02 mg/l, Chloride ion levels 12.29 mg/l - 15.88 mg/l, Fluoride ion levels 0.01 mg/l and Nitrates from 0.27 mg/l - 0.48 mg/l. Total Heterotopic Fungi population ranged from 15.26 - 48.55 Coliform Forming units/ml. The maximum permissible value of total coliforms in drinking water was exceeded. However, the Total Hydrocarbon Concentration (THC) across the groundwater sample points was less than 0.01 mg/l. The concentration of PAH and BTEX was 0.01 mg/l across the study area. The heavy metal concentrations in the groundwater samples were negligible with levels of 0.01 mg/l observed in the study area except for iron ranging from 0.20 - 0.56 mg/l levels above the WHO permissible limit. The physico-chemical parameters of groundwater indicate that they fall below WHO permissible limits. The cations and anions concentration indicate a stable and healthy water system which is relatively good. The groundwater system has high levels of iron in groundwater and bacterial contamination. Treatment is required to avoid acute and chronic iron overload resulting from consumption from drinking groundwater within the study area.
文摘BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.
文摘Ten most popular brands of commercial Turkish set-type yoghurts were collected from local retail outlets in Hatay, Turkey for two separate periods, and analyzed for basic nutrients, physico-chemical properties, volatile aroma compounds and free fatty acid profiles to compare their differences among the yoghurt products. The results showed that there were significant differences (P<0.05, 0.01, or 0.001) and variations in physico-chemical indices, volatile aroma compounds and volatile free fatty acid profiles among the yoghurt brands, which ultimately influence the flavor quality of the product. Acetaldehyde was predominant volatile compound in yoghurts, which followed by acetone, acetoin, diacetyl and ethanol. The level of diacetly was inversely related to titratable acidity, acetaldehyde and ethanoic acid. From ketones with high carbones 2-undecanone and 2-pentadecanone were higher than 2-butanone, 2-nanonane and 2-tridecanone. These ketones are related to fat content of yoghurt. Among short chain free fatty acids, ethanoic (acetic) acid was the most abundant in yoghurts, followed by hexanoic, octanoic and butanoic acids. These differences in detected chemical compositions of volatile compounds and free fatty acids would be applicable to predict flavor, nutritional value, quality control or shelf-life of the commmercial set-type Turkish yoghurts.
文摘The deterioration of water quality in lakes constitutes an environmental problem faced by humanity. The Nkolbisson artificial lake which is located downstream of the Abiergue and Mintotomo streams in Yaounde is under the influence of various forms of pollution, mostly resulting from human activities. There is proliferation of algae on the lake surface that consumes the available oxygen in the lake. The main objective of the current study is to evaluate the different forms of pollutants in the lake, in order to propose efficient solutions for a suitable management strategy, basing on the physico-chemical and biological analysis. The lake retains an average of 2535.49 tons/year of suspended solids in the rainy season and 1438.05 tons/year in the dry season. The range of dissolved oxygen (5.2 - 3.8 mg/l);pH (7.8 - 6.8);temperature (23.9°C - 23.1°C);electrical conductivity (266.1 - 87.3 μS/cm);turbidity (22.3 - 10 UNT);suspended solid (240 - 40 mg/l);BOD (55 - 8 mg/l);COD (76 - 87.3 mg/l). Biologically, faecal coliforms fluctuates between (42 × 102 - 425 × 103 FCU/100 ml), faecal streptococci (8 × 103 - 158 × 103 FCU/100 ml) and total Coliform (15 × 103 - 78 × 106 FCU/100 ml) evidence that, the studied lake is highly polluted. Consequently the lake retains an average of 2888.7 tons/year of suspended matter.
文摘The river water and groundwater from Lagbe town in Benin Republic were collected and analyzed for physical, chemical and microbiological parameters. The surface water samples were treated with alum, Moringa oleifera seeds powder and the combination of alum and Moringa oleifera seeds. The jar-test essays were carried out with two water samples at initial turbidities 7.2 NTU and 14.4 NTU. The water samples analyzed are fairly mineralized (conductivity varies between 166 and 687 μS/cm), enough soft and contain the nitrate (104 mg/L for W4 sample). They are greatly polluted by pathogenic microorganisms such as Escherichia coli, Klebsiella, Enterococcus, Vibrio, Serratia. The optimal dosages of Moringa are 96 mg/L and 80 mg/L respectively. We have observed a reduction of 60% of turbidity and a substantial remove of all pathogenic microorganisms after water treatment with Moringa oleifera seeds. For the combination treatment, 93% of initial turbidity and 92% of initial concentration of organic matter in the sample E2 were eliminated. The pH remained almost constant during the treatment.
文摘The aim of this study was to optimize composite breads of wheat and whole millet flour by the use of natural improvers. Three types of local malted cereals were used as natural improvers. The millet flour was fermented with EPSs producing LAB strain prior to use. The technological characteristics of the composite flours were determined using an alveograph. The physico-chemical and nutritional characteristics of the composite breads were determined using standard methods and their sensory profiles were evaluated by a panel of 35 consumers. The alveograph results showed an increase in dough resistance, deformation and a decrease in extensibility and elasticity with the level of incorporation of millet flour. From the results of physico-chemical analyses of composite breads, no significant difference (p > 0.05) was observed in the use of the three types of local cereal malts except for the incorporation of 50% of the millet flour. The control sample presented the lowest acidity and dry matter value, the highest water content and pH value. No significant difference (p > 0.05) was observed in the use of the three types of cereal malts for the macronutrient contents of the composite bread samples. However, differences were observed according to the levels of incorporation. Macronutrients results showed an increase in protein content (11.17% ± 0.28% - 14.01% ± 0.10%/DM);crude fat content (1.86% ± 0.05% - 2.48% ± 0.20%/DM) and a decrease in carbohydrates content (85.36% ± 0.54% - 81.06% ± 0.36%/ DM). Regarding the content of mineral elements, significant differences (p < 0.05) were observed in the use of the three types of cereal malts for the incorporation of 15% (Mg and Fe content), 30% (Fe, Zn and K) and 50% (content of Zn, K, Na and Mg) of millet flour. The free amino acid profile revealed three essential amino acids such as valine, isoleucine and lysine. Breads incorporated with 30% of whole millet flour were the most appreciated by consumers.
基金The present work was supported by the National Natural Science Foundation of China (21968024)the Project of Key Research Plan of Ningxia (2019BCH01001)The authors also gratefully thank Professor Junzhuo Fang for his help in taking SEM–EDS photos.
文摘The present study aims to explore the physico-chemical structure evolution characteristic during Yangchangwan bituminous coal(YCW)gasification in the presence of iron-based waste catalyst(IWC).The catalytic gasification reactivity of YCW was measured by thermogravimetric analyzer.Scanning electron microscope–energy dispersive system,nitrogen adsorption analyzer and laser Raman spectroscopy were employed to analyze the char physico-chemical properties.The results show that the optimal IWC loading ratio was 5 wt%at 1000°C.The distribution of IWC on char was uneven and Fe catalyst concentrated on the surface of some chars.The specific surface area of YCW gasified semi-char decreased significantly with the increase of gasification time.i.e.,the specific surface area reduced from 382 m2/g(0 min)to 192 m2/g(3 min),meanwhile,the number of micropores and mesopores decreased sharply at the late gasification stage.The carbon microcrystalline structure of YCW gasified semi-char was gradually destroyed with the increase of gasification time,and the microcrystalline structure with small size was gradually generated,resulting in the decreasing order degree of carbon microcrystalline structure.IWC can catalyze YCW gasification which could provide theoretical guidance for industrial solid waste recycling.
基金Supported by the National Natural Science Foundation of China,No.81900533Science and Technology Project of Henan Science and Technology Department,No.232102520032。
文摘Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.
基金Supported by Xi’an Health Commission Residential Training Base Construction Project,No.2023zp09.
文摘BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金supported by the National Natural Science Foundation of China(Grant No.11672278)。
文摘Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.
基金support from the National Natural Science Foundation of China(No.41941018,No.52074299)the Fundamental Research Funds for the Central Universities(No.2023JCCXSB02)the China Geological Survey Project(DD20221816,DD20211376)are gratefully acknowledged.
文摘To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.