Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be...Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be a completely integrable system (R2N, Adp AND dq, H = H-1) with the Hamiltonian H-1 = -[A3q, p]-1/2[A2p, p][A2q, q]. while the nonlinearization of the time part leads to its N-involutive system {H(m)}. The involutive solution of the compatible fsystem (H-1), (H(m)) is mapped by into the solution of the higher order Kaup-Newell equation.展开更多
Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC...Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.展开更多
Carbon dioxide(CO_(2))is one of the main factors contributing to the greenhouse effect.The dependence on fossil fuels has led to increasing levels of carbon dioxide in the atmosphere every year.And it is far from enou...Carbon dioxide(CO_(2))is one of the main factors contributing to the greenhouse effect.The dependence on fossil fuels has led to increasing levels of carbon dioxide in the atmosphere every year.And it is far from enough to solve the climate problem by reducing the consumption of fossil fuels to cut down carbon dioxide emissions.In recent years,a series of researches on Carbon Capture,Utilization and Storage(CCUS)have been carried out in various countries around the world.CO_(2) is a nontoxic,tasteless and stable gas at normal temperature.However,when it reaches supercritical state after rising temperature and pressure,it has the characteristics of low viscosity,high diffusivity and high density,and is widely used in green,pollution-free and efficient development technology.Because of these unique properties,supercritical carbon dioxide(sCO_(2))has attracted more and more attention from researchers.sCO_(2) has been widely used in many aspects by virtue of its high solubility and easy compression.Different from previous reviews which only introduced the application of sCO_(2) property,this paper introduces the current research status of the application of the thermodynamic property of carbon dioxide in extraction,dyeing,pharmaceutical,power generation,heat transfer and exploitation of unconventional oil and gas,and mainly analyzes each application in detail from the aspects of working mechanism and improving working efficiency.Finally,the research direction and problems needed to be solved for the application of CO_(2) thermal physics are proposed,which pave the way for other new applications.展开更多
Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pu...Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
文摘Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be a completely integrable system (R2N, Adp AND dq, H = H-1) with the Hamiltonian H-1 = -[A3q, p]-1/2[A2p, p][A2q, q]. while the nonlinearization of the time part leads to its N-involutive system {H(m)}. The involutive solution of the compatible fsystem (H-1), (H(m)) is mapped by into the solution of the higher order Kaup-Newell equation.
文摘Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.
文摘Carbon dioxide(CO_(2))is one of the main factors contributing to the greenhouse effect.The dependence on fossil fuels has led to increasing levels of carbon dioxide in the atmosphere every year.And it is far from enough to solve the climate problem by reducing the consumption of fossil fuels to cut down carbon dioxide emissions.In recent years,a series of researches on Carbon Capture,Utilization and Storage(CCUS)have been carried out in various countries around the world.CO_(2) is a nontoxic,tasteless and stable gas at normal temperature.However,when it reaches supercritical state after rising temperature and pressure,it has the characteristics of low viscosity,high diffusivity and high density,and is widely used in green,pollution-free and efficient development technology.Because of these unique properties,supercritical carbon dioxide(sCO_(2))has attracted more and more attention from researchers.sCO_(2) has been widely used in many aspects by virtue of its high solubility and easy compression.Different from previous reviews which only introduced the application of sCO_(2) property,this paper introduces the current research status of the application of the thermodynamic property of carbon dioxide in extraction,dyeing,pharmaceutical,power generation,heat transfer and exploitation of unconventional oil and gas,and mainly analyzes each application in detail from the aspects of working mechanism and improving working efficiency.Finally,the research direction and problems needed to be solved for the application of CO_(2) thermal physics are proposed,which pave the way for other new applications.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11674161,11174122 and 11134004)the Six Big Talent Peak Project from Jiangsu Province(Grant No.XCL-004)open project of National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M28026)
文摘Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.