期刊文献+
共找到265篇文章
< 1 2 14 >
每页显示 20 50 100
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs 被引量:3
1
作者 黄欣芮 黄建平 +3 位作者 李振春 杨勤勇 孙启星 崔伟 《Applied Geophysics》 SCIE CSCD 2015年第1期11-22,120,共13页
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph... Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs. 展开更多
关键词 brittleness index tight-oil sandstone reservoirs seismic rock physics model brittleness sensitivity anisotropy
下载PDF
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale 被引量:4
2
作者 Qian Ke-Ran He Zhi-Liang +2 位作者 Chen Ye-Quan Liu Xi-Wu Li Xiang-Yang 《Applied Geophysics》 SCIE CSCD 2017年第4期463-479,620,共18页
The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existin... The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the self- consistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BL Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction. 展开更多
关键词 Rock physics modeling BRITTLENESS SHALE ANISOTROPY
下载PDF
The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir 被引量:5
3
作者 Xin-Peng Pan Guang-Zhi Zhang Jiao-Jiao Chen 《Petroleum Science》 SCIE CAS CSCD 2020年第3期658-670,共13页
Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale roc... Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale rock physics model is significant for the exploration and development of shale reservoirs.To make a better characterization of shale gas-bearing reservoirs,we first propose a new but more suitable rock physics model to characterize the reservoirs.We then use a well A to demonstrate the feasibility and reliability of the proposed rock physics model of shale gas-bearing reservoirs.Moreover,we propose a new brittleness indicator for the high-porosity and organic-rich shale gas-bearing reservoirs.Based on the parameter analysis using the constructed rock physics model,we finally compare the new brittleness indicator with the commonly used Young’s modulus in the content of quartz and organic matter,the matrix porosity,and the types of filled fluids.We also propose a new shale brittleness index by integrating the proposed new brittleness indicator and the Poisson’s ratio.Tests on real data sets demonstrate that the new brittleness indicator and index are more sensitive than the commonly used Young’s modulus and brittleness index for the high-porosity and high-brittleness shale gas-bearing reservoirs. 展开更多
关键词 Shale gas Rock physics model Brittleness prediction
下载PDF
Acoustic-electrical properties and rock physics models for shale-oil formations:prediction of reservoir properties of interbedded sandstone and shale layers
4
作者 Pang Meng-Qiang Ba Jing +2 位作者 Wu Chun-Fang Carcione José Maria Müller Tobias 《Applied Geophysics》 SCIE CSCD 2022年第4期485-502,603,共19页
In recent years,the Yanchang shale-oil formations of the Ordos Basin are rich in reserves with complex lithology and structure characteristics,low porosity and low permeability,and weak anomalies for oil and water dis... In recent years,the Yanchang shale-oil formations of the Ordos Basin are rich in reserves with complex lithology and structure characteristics,low porosity and low permeability,and weak anomalies for oil and water discriminations,have been the key targets of unconventional oil/gas resource exploration and development in the relevant areas.The joint acoustic-electrical(AE)properties can be used to interpret reservoir lithology,mineralogy,pore structure,and fluid saturation.To conduct tests of thin section analysis,X-ray diff raction,and ultrasonic and electrical experiments at diff erent pressures and saturation degrees,cores from the shale-oil formations in the Q area of the basin are collected.The variations in AE properties with respect to clay content,porosity,pressure(microfracture),and saturation are analyzed.The experimental results indicate that the rock physics behaviors of sandstones with diff erent clay contents vary significantly.The AE properties of clean sandstones are basically dependent on the microfractures(pressure),while for muddy sandstones,the clay content is an important factor affecting the responses.The target reservoir consists of interbedded sandstone and shale layers.The AE equivalent medium equations and the Gurevich theory are applied to establish the joint models for the diff erent lithologies and simulate the variations in AE properties with respect to fluid type,pore structure,and mineral components.The three-dimensional joint templates of clean and muddy sandstones,as well as shale,are developed based on the elastic and electrical attributes and then calibrated using the experimental and well-log data.The reservoir properties are estimated with the templates and validated by the log data.The results indicate that the joint templates based on lithology characteristics can eff ectively characterize the properties of interbedded sandstone and shale layers.Furthermore,the combined application of AE data provides more beneficial information for the assessment of rock properties,leading to precise estimates that conform with the actual formation conditions. 展开更多
关键词 shale-oil formations acoustic-electrical(AE)properties interbedded layers clay content pore structure rock physics model
下载PDF
One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers
5
作者 司铁岩 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期119-137,共19页
A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed mo... A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. 展开更多
关键词 physics model of muscles fibers cooperative molecule motors force-velocity relationship quantum chain model
下载PDF
Impacts of New Implementing Strategies for Surface and Model Physics Perturbations in TREPS on Forecasts of Landfalling Tropical Cyclones 被引量:3
6
作者 Xubin ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第11期1833-1858,共26页
To improve the ensemble prediction system of the tropical regional atmosphere model for the South China Sea(TREPS) in predicting landfalling tropical cyclones(TCs), the impacts of three new implementing strategies for... To improve the ensemble prediction system of the tropical regional atmosphere model for the South China Sea(TREPS) in predicting landfalling tropical cyclones(TCs), the impacts of three new implementing strategies for surface and model physics perturbations in TREPS were evaluated for 19 TCs making landfall in China during 2014–16. For sea surface temperature(SST) perturbations, spatially uncorrelated random perturbations were replaced with spatially correlated ones. The multiplier f, which is used to form perturbed tendency in the Stochastically Perturbed Parameterization Tendency(SPPT) scheme, was inflated in regions with evident convective activity(f-inflated SPPT). Lastly, the Stochastically Perturbed Parameterization(SPP) scheme with 14 perturbed parameters selected from the planetary boundary layer, surface layer, microphysics, and cumulus convection parameterizations was added. Overall, all these methods improved forecasts more significantly for non-intensifying than intensifying TCs. Compared with f-inflated SPPT,the spatially correlated SST perturbations generally showed comparable performance but were more(less) skillful for intensifying(non-intensifying) TCs. The advantages of the spatially correlated SST perturbations and f-inflated SPPT were mainly present in the deterministic guidance for both TC track and wind and in the probabilistic guidance for reliability of wind. For intensifying TCs, adding SPP led to mixed impacts with significant improvements in probability-matched mean of modest winds and in probabilistic forecasts of rainfall;while for non-intensifying TCs, adding SPP frequently led to positive impacts on the deterministic guidance for track, intensity, strong winds, and moderate rainfall and on the probabilistic guidance for wind and discrimination of rainfall. 展开更多
关键词 ensemble forecasting MESOSCALE TC forecasting surface perturbations perturbations for model physics
下载PDF
A data and physical model dual-driven based trajectory estimator for long-term navigation
7
作者 Tao Feng Yu Liu +2 位作者 Yue Yu Liang Chen Ruizhi Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期78-90,共13页
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ... Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively. 展开更多
关键词 Long-term navigation Wearable inertial sensors Bi-LSTM QSMF Data and physical model dual-driven
下载PDF
Physics-based seismic analysis of ancient wood structure:fault-to-structure simulation
8
作者 Ba Zhenning Fu Jisai +3 位作者 Wang Fangbo Liang Jianwen Zhang Bin Zhang Long 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期727-740,共14页
Based on the domain reduction method,this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method(SEM)for flexible and highly efficient simulation of seismic wave propag... Based on the domain reduction method,this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method(SEM)for flexible and highly efficient simulation of seismic wave propagation in a three-dimensional(3D)regional-scale geophysics model and the finite element method(FEM)for fine simulation of structural response including soil-structure interaction,and performs a physics-based simulation from initial fault rupture on an ancient wood structure.After verification of the hybrid workflow,a large-scale model of an ancient wood structure in the Beijing area,The Tower of Buddhist Incense,is established and its responses under the 1665 Tongxian earthquake and the 1730 Yiheyuan earthquake are simulated.The results from the simulated ground motion and seismic response of the wood structure under the two earthquakes demonstrate that this hybrid workflow can be employed to efficiently provide insight into the relationships between geophysical parameters and the structural response,and is of great significance toward accurate input for seismic simulation of structures under specific site and fault conditions. 展开更多
关键词 spectral element method finite element method fault-to-structure simulation physical model domain reduction method
下载PDF
Maximum initial primary wave model for low-Froude-number reservoir landslides based on wave theory
9
作者 LI Yang HUANG Bolin +2 位作者 QIN Zhen DONG Xingchen HU Lei 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2664-2680,共17页
The impulse waves induced by large-reservoir landslides can be characterized by a low Froude number.However,systematic research on predictive models specifically targeting the initial primary wave is lacking.Taking th... The impulse waves induced by large-reservoir landslides can be characterized by a low Froude number.However,systematic research on predictive models specifically targeting the initial primary wave is lacking.Taking the Shuipingzi 1#landslide that occurred in the Baihetan Reservoir area of the Jinsha River in China as an engineering example,this study established a large-scale physical model(with dimensions of 30 m×29 m×3.5 m at a scale of 1:150)and conducted scaled experiments on 3D landslide-induced impulse waves.During the process in which a sliding mass displaced and compressed a body of water to generate waves,the maximum initial wave amplitude was found to be positively correlated with the sliding velocity and the volume of the landslide.With the increase in the water depth,the wave amplitude initially increased and then decreased.The duration of pressure exertion by the sliding mass at its maximum velocity directly correlated with an elevated wave amplitude.Based on the theories of low-amplitude waves and energy conservation,while considering the energy conversion efficiency,a predictive model for the initial wave amplitude was derived.This model could fit and validate the functions of wavelength and wave velocity.The accuracy of the initial wave amplitude was verified using physical experiment data,with a prediction accuracy for the maximum initial wave amplitude reaching 90%.The conversion efficiency(η)directly determined the accuracy of the estimation formula.Under clear conditions for landslide-induced impulse wave generation,estimating the value ofηthrough analogy cases was feasible.This study has derived the landslide-induced impulse waves amplitude prediction formula from the standpoints of wave theory and energy conservation,with greater consideration given to the intrinsic characteristics in the formation process of landslide-induced impulse waves,thereby enhancing the applicability and extensibility of the formula.This can facilitate the development of empirical estimation methods for landslide-induced impulse waves toward universality. 展开更多
关键词 Three-dimensional physical model experiments Reservoir-landslide-induced impulse wave Energy conversion efficiency Landslide-induced impulse wave prediction model Shuipingzi 1#landslide
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
10
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation Stability identification
下载PDF
Physical model test and application of 3D printing rock-like specimens to laminated rock tunnels
11
作者 Yun Tian Weizhong Chen +3 位作者 Hongming Tian Xiaoyun Shu Linkai He Man Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4625-4637,共13页
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t... Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks. 展开更多
关键词 Bedding plane Three-dimensional(3D)printing Physical model test Non-uniform deformation Digital imaging correlation(DIC)
下载PDF
Large-scale complex physical modeling and precisionanalysis 被引量:6
12
作者 吴满生 狄帮让 +4 位作者 魏建新 梁向豪 周翼 刘依谋 孔昭举 《Applied Geophysics》 SCIE CSCD 2014年第2期245-251,255,共8页
Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Suc... Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology. 展开更多
关键词 complex structure seismic physical modeling modeling construction ACQUISITION
下载PDF
The analysis of frequency-dependent characteristics for fluid detection: a physical model experiment 被引量:2
13
作者 陈双全 李向阳 王尚旭 《Applied Geophysics》 SCIE CSCD 2012年第2期195-206,235,236,共14页
According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi... According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly. 展开更多
关键词 Frequency-dependent characteristic fluid detection time-frequency analysis attenuation and dispersion physical model
下载PDF
Rock physics inversion based on an optimized MCMC method 被引量:1
14
作者 Zhang Jia-Jia Li Hong-Bing +2 位作者 Zhang Guang-Zhi Gu Yi-Peng Liu Zhuo-Fan 《Applied Geophysics》 SCIE CSCD 2021年第3期288-298,431,共12页
Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics in... Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics inverse problems.However,all the parameters to be inverted are iterated simultaneously in the conventional MCMC algorithm.What is obtained is an optimal solution of combining the petrophysical parameters with being inverted.This study introduces the alternating direction(AD)method into the MCMC algorithm(i.e.the optimized MCMC algorithm)to ensure that each petrophysical parameter can get the optimal solution and improve the convergence of the inversion.Firstly,the Gassmann equations and Xu-White model are used to model shaly sandstone,and the theoretical relationship between seismic elastic properties and reservoir petrophysical parameters is established.Then,in the framework of Bayesian theory,the optimized MCMC algorithm is used to generate a Markov chain to obtain the optimal solution of each physical parameter to be inverted and obtain the maximum posterior density of the physical parameter.The proposed method is applied to actual logging and seismic data and the results show that the method can obtain more accurate porosity,saturation,and clay volume. 展开更多
关键词 Rock physics inversion petrophysical parameters prediction rock physics model optimized MCMC
下载PDF
Wide angle reflections in OBC seismic physical model experiment
15
作者 杨正华 黄翼坚 吴永新 《Applied Geophysics》 SCIE CSCD 2012年第2期207-212,236,共7页
Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections ... Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor. 展开更多
关键词 ocean bottom cable physical model wide angle refection model experiment
下载PDF
Single Production of Doubly Charged Higgs Boson via cγCollision in Higgs Triplet Model
16
作者 苏雪松 岳崇兴 +1 位作者 张娇 王珏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第10期709-717,共9页
The Higgs triplet model (HTM) predicts the existence of a pair of doubly charged Higgs bosons H±±. Single production of H±± via e7 collision at the next generation e+ e- International Linear Col... The Higgs triplet model (HTM) predicts the existence of a pair of doubly charged Higgs bosons H±±. Single production of H±± via e7 collision at the next generation e+ e- International Linear Collider (ILC) and the Large Hadron electron Collider (LHeC) is considered. The numerical results show that the production cross sections are very sensitive to the neutrino oscillation parameters. Their values for the inverted hierarchy mass spectrum are larger than those for the normal hierarchy mass spectrum at these two kinds of collider experiments. With reasonable values of the relevant free parameters, the possible signals of the doubly charged Higgs bosons predicted by the HTM might be detected in future ILC experiments. 展开更多
关键词 doubly charged Higgs boson high energy collider experiments new physics models
下载PDF
Simplifying the Integration of Petrophysics and Rock-Physics to Identify Hydrocarbon Bearing Rocks on Seismic
17
作者 Arfan Ali Erick Alvarez 《International Journal of Geosciences》 CAS 2022年第10期951-972,共22页
A considerable effort has been made in the literature for quality assurance (QA) and quality checking (QC) of the petrophysical log data for computation of reservoir rock property parameters. Well log data plays an in... A considerable effort has been made in the literature for quality assurance (QA) and quality checking (QC) of the petrophysical log data for computation of reservoir rock property parameters. Well log data plays an integral role in building a rock physics model for quantitative interpretation (QI) work. A poor-quality rock physics model may lead to significant financial and HSSE implications by drilling wells in undesired locations. Historically, a variety of techniques have been used including histograms and cross plots for reviewing the feasibility of petrophysical logs for QI work. However, no attempt has ever been made to introduce a simplified workflow. This paper serves two-fold. It provides a simplified step by step approach for building a petrophysics/rock physics model. A case study has been presented to compare the synthetic seismogram generated from the simplified workflow with the actual seismic trace at well locations. Secondly, the paper shows how a few key cross plots and rock property parameters provide adequate information to validate petrophysical data, distinguish overburden and reservoir sections, and to help identify fluids and saturation trends within the reservoir sands. In the mentioned case study, the robustness of the simplified rock physics model has helped seismic data to successfully distinguish hydrocarbon bearing reservoir sands from non-reservoir shales. 展开更多
关键词 Petrophysics-Rock physics Integration Rock physics model Quantitative Interpretation Simplified Workflow Seismic to Well Tie
下载PDF
LAGFD-WAM numerical wave model-Ⅰ. Basic physical model 被引量:47
18
作者 Yuan Yeli, Hua Feng, Pan Zengdi Sun Letao First Institute of Oceanography, State Oceanic Administration, Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1991年第4期483-488,共6页
The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equati... The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions. 展开更多
关键词 WAVE LAGFD-WAM numerical wave model Basic physical model WAM
下载PDF
Physical modeling of failure process of the excavation in horizontal strata based on IR thermography 被引量:24
19
作者 HE Man-chao GONG Wei-li +1 位作者 LI De-jian ZHAI Hui-ming 《Mining Science and Technology》 EI CAS 2009年第6期689-698,共10页
In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating t... In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading. 展开更多
关键词 ROADWAY stratified rock mass deep mining physical modeling IR thermography
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:13
20
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism Physical model test 3DEC Layered soft rocks Large deformation
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部