期刊文献+
共找到1,644篇文章
< 1 2 83 >
每页显示 20 50 100
Physiological Responses of Clam(Ruditapes philippinarum)to Transport Modes with Different Temperatures 被引量:1
1
作者 BI Shijie XUE Changhu +4 位作者 XU Lili WEN Yunqi WANG Lihao LI Zhaojie LIU Hongying 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期517-526,共10页
Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transpo... Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transportation of clams.The container for holding clams was reformed,and a water circulation temperature control system was established.The physiological responses of clams during anhydrous and watery transportation at two temperatures(4 and 15℃)were investigated based on the aforementioned system.When comparing the transportation patterns after 3 d of transport,a higher survival rate was observed at 4℃(97%)than at 15℃(63%)in the anhydrous transportation groups and a lower survival rate was observed at 4℃(93%)than at 15℃(99%)in the watery transportation groups.In addition,the glycogen content,condition index(CI),and adenylate energy charge(A.E.C)value were higher at4℃((40.87±0.99)mg g^(-1),13.71%±0.50%and 57.45%±1.60%)than at 15℃((30.54±0.81)mg g^(-1),9.09%±0.30%and 43.12%±1.65%)in the anhydrous transportation groups.In the watery transportation groups,a lower glycogen content,CI,and A.E.C.value were observed at 4℃((33.78±0.84)mg g^(-1),9.78%±0.50%and 64.65%±1.25%)than at 15℃((41.53±0.93)mg g^(-1),12.72%±0.83%and 71.58%±1.27%).Results from this study show that anhydrous transportation(4℃)is the optimal transport condition for clams to maintain a high quality and good physiological conditions.Thus,this study will be particularly useful for establishing shellfish transportation systems. 展开更多
关键词 watery transportation anhydrous transportation CLAM physiological response TEMPERATURE
下载PDF
Salt stress responses in foxtail millet:Physiological and molecular regulation
2
作者 Changai Wu Meng Zhang +2 位作者 Yifan Liang Lei Zhang Xianmin Diao 《The Crop Journal》 SCIE CSCD 2023年第4期1011-1021,共11页
Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,sho... Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,short growth cycle,and strong natural abiotic stress resistance.Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity.The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice,were compared with those from foxtail millet to summarize current research on responses to salt stress.Numerous processes are involved in these processes,including physiological reactions,sensing,signaling,and control at the transcriptional,post-transcriptional,and epigenetic levels.To increase crop productivity and agricultural sustainability,a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet. 展开更多
关键词 Foxtail millet SALINITY physiological responses Molecular regulation Crop productivity
下载PDF
Seed Dormancy and Seedlings Physiological Response to Topramezone in Green Foxtail(Setaria viridis)
3
作者 Ding Wei Chang Xin-yue +1 位作者 Cheng Zhuo Cheng Peng 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期32-42,共11页
Green foxtail(Setaria viridis)is a notorious weed in corn fields in Heilongjiang Province.To investigate the best method to break the seed dormancy of green foxtail and its physiological response to topramezone,this s... Green foxtail(Setaria viridis)is a notorious weed in corn fields in Heilongjiang Province.To investigate the best method to break the seed dormancy of green foxtail and its physiological response to topramezone,this study selected newly harvested and one-year stored green foxtail seeds as research subjects.The seeds were treated with HCl,Na OH,gibberellic acid(GA),different water temperatures and polyethylene glycol(PEG)to study the seed dormancy and drought resistance of green foxtail.The results showed that newly harvested seeds exhibited dormancy,and treatments with HCl,NaOH and different water temperatures were unable to break the dormancy.Soaking the seeds in GA could overcome dormancy,but the seeds failed to germinate when exposed to 25%PEG concentration.When topramezone was applied at rates of 22.5 and 45.0 g a.i.·hm^(-2)at the 3-leaf and 5-leaf stages,respectively,the chlorophyll content reached the lowest value at 28 days after treatment(DAT).At the 7-leaf stage,the chlorophyll content reached the lowest value at 7 DAT.The activity of 4-hydroxyphenylpy-ruvate dioxygenase(HPPD)enzyme after topramezone application reached the maximum value at 7 DAT for different leaf ages,and the higher the leaf age,the higher the HPPD activity,which was an important factor contributing to the resistance of green foxtail to topramezone. 展开更多
关键词 green foxtail seed dormancy topramezone physiological response
下载PDF
Physiological and Biochemical Response of Artificial Wetland Plant under Electric Field 被引量:5
4
作者 卢守波 宋新山 +2 位作者 张涛 王道源 严登华 《Agricultural Science & Technology》 CAS 2010年第5期121-124,共4页
By measuring wetland plants chlorophyll content,malondialdehyde(MDA) content and superoxide dismutase(SOD) enzyme activity,the changes of wetland plant physiological characeristics under different power strength were ... By measuring wetland plants chlorophyll content,malondialdehyde(MDA) content and superoxide dismutase(SOD) enzyme activity,the changes of wetland plant physiological characeristics under different power strength were studied,and the mechanism of electric field on plant physiological characteristics was analyzed to provide a theoretical basis for the pollutant removal ability strengthening of artificial wetland under electricfield.The results showed that compared with the control plants,low-intensity-voltage(1 V and 3 V) had no significant effect on the normal physiological and biochemical indexes of the plants,and the growth trend was better than the control group;with the voltage increasing,plant chlorophyll content,MDA content and SOD activity were greatly affected,indicating that plants were under strong oxidative stress,and the growth was damaged.Therefore,a suitable electric field could enhance the sewage treatment effect of constructed wetland. 展开更多
关键词 Electric field Artificial wetland plant physiological and biochemical indexes response
下载PDF
Physiological and Biochemical Responses of Chinese Cabbage to La and Zn Stresses 被引量:1
5
作者 王学 刘东武 +1 位作者 刘涛 丁忠峰 《Agricultural Science & Technology》 CAS 2013年第5期767-770,共4页
[Objective] The aim of this study was to explore the physiological and biochemical responses of Chinese cabbage to La and Zn. [Method] The effects of La and Zn on seed germination and seedling growth were explored by ... [Objective] The aim of this study was to explore the physiological and biochemical responses of Chinese cabbage to La and Zn. [Method] The effects of La and Zn on seed germination and seedling growth were explored by tissue culture method. [Result] La and Zn had little effects on seed germination rate, but significantly inhibited the growth of root and seedling, decreased their fresh weight at higher concentration; the inhibition of La proved higher on Chinese cabbage. The contents of chlorophyll and soluble protein increased at lower concentrations of La and Zn, but decreased at higher concentrations. With increasing doses of La and Zn, the activities of CAT and POD rose gradually, while SOD activity decreased at lower doses and increased at higher doses. Both of La and Zn would promote Of. producing and MDA accumulation. [Conclusion] In higher concentration, La was more poisonous than Zn. It is clear that the poisonous mechanism of La is similar to that of Zn. Hence, La is possibly a kind of new pollutant. 展开更多
关键词 LANTHANUM ZINC Chinese cabbage physiological and biochemical responses
下载PDF
Seed Storability in Rice: Physiological Foundations, Molecular Mechanisms, and Applications in Breeding
6
作者 ZHOU Tianshun YU Dong +3 位作者 WU Liubing XU Yusheng DUAN Meijuan YUAN Dingyang 《Rice science》 SCIE CSCD 2024年第4期401-416,I0023-I0024,共18页
Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumpti... Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumption and production worldwide. However, its food value and seed viability tend to decline during storage. Understanding the physiological responses and molecular mechanisms of aging tolerance forms the basis for enhancing seed storability in rice. This review outlines the latest progress in influential factors, evaluation methods, and identification indices of seed storability. It also discusses the physiological consequences, molecular mechanisms, and strategies for breeding aging-tolerant rice in detail. Finally, it highlights challenges in seed storability research that require future attention. This review offers a theoretical foundation and research direction for uncovering the mechanisms behind seed storability and breeding aging-tolerant rice. 展开更多
关键词 RICE seed storability physiological response molecular mechanism aging-tolerant breeding
下载PDF
Growth and physiological responses of Agriophyllum squarrosum to sand burial stress 被引量:5
7
作者 Jin LI Hao QU +3 位作者 HaLin ZHAO RuiLian ZHOU JianYing YUN ChengChen PAN 《Journal of Arid Land》 SCIE CSCD 2015年第1期94-100,共7页
Agriophyllum squarrosum is an annual desert plant widely distributed on mobile and semi-mobile dunes in all the sandy deserts of China. We studied the growth and physiological properties of A. squarrosum seedlings und... Agriophyllum squarrosum is an annual desert plant widely distributed on mobile and semi-mobile dunes in all the sandy deserts of China. We studied the growth and physiological properties of A. squarrosum seedlings under different sand burial depths in 2010 and 2011 at Horqin Sandy Land, Inner Mongolia to understand the ability and mechanism that A. squarrosum withstands sand burial. The results showed that A. squarrosum had a strong ability to withstand sand burial. Its survival rate, plant height and biomass increased significantly at a burial depth 25% of seedling height and decreased significantly only when the burial depth exceeded the height of the seedlings; some plants still survived even if the burial depth reached 266% of a seedling height. The malondialdehyde (MDA) content and membrane permeability of the plant did not change significantly as long as the burial depth was not greater than the seedling height; lipid peroxidation increased and cell membranes were damaged if the burial depth was increased further. When subjected to sand burial stress, superoxide dismutase (SOD) and peroxidase (POD) activities and free proline content increased in the seedlings, while the catalase (CAT) activity and soluble sugar content decreased. Sand burial did not lead to water stress. Reductions in photosynthetic area and cell membrane damage caused by sand burial may be the major mechanisms increasing mortality and inhibiting growth of the seedling. But the increases in SOD and POD activities and proline content must play a certain role in reducing sand burial damage. 展开更多
关键词 Agriophyllum squarrosum PSAMMOPHYTE sand burial stress growth inhibition physiological response
下载PDF
Salt tolerance in rice:Physiological responses and molecular mechanisms 被引量:15
8
作者 Citao Liu Bigang Mao +2 位作者 Dingyang Yuan Chengcai Chu Meijuan Duan 《The Crop Journal》 SCIE CSCD 2022年第1期13-25,共13页
Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide.Salt stress drastically affects the growth,development,and grain productivity of rice(Oryza sativa L.),and the improvement of r... Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide.Salt stress drastically affects the growth,development,and grain productivity of rice(Oryza sativa L.),and the improvement of rice tolerance to salt stress is a desirable approach for meeting increasing food demand.The main contributors to salt toxicity at a global scale are Na^(+)and Cl^(-)ions,which affect up to 50%of irrigated soils.Plant responses to salt stress occur at the organismic,cellular,and molecular levels and are pleiotropic,involving(1)maintenance of ionic homeostasis,(2)osmotic adjustment,(3)ROS scavenging,and(4)nutritional balance.In this review,we discuss recent research progress on these four aspects of plant physiological response,with particular attention to hormonal and gene expression regulation and salt tolerance signaling pathways in rice.The information summarized here will be useful for accelerating the breeding of salt-tolerant rice. 展开更多
关键词 Salt stress Rice(Oryza sativa L.) Salt tolerance genes physiological response Salt signal transduction
下载PDF
Growth, Metabolism and Physiological Response of the Sea Cucumber, Apostichopus japonicus Selenka During Periods of Inactivity 被引量:5
9
作者 DU Rongbin ZANG Yuanqi +1 位作者 TIAN Xiangli DONG Shuanglin 《Journal of Ocean University of China》 SCIE CAS 2013年第1期146-154,共9页
The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosp... The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), and content of heat shock protein 70 (Hsp70) in the body wall and coelomic fluid of A. japonicus were measured during starvation, experimental aestivation and aestivation. The results showed that the body weight of sea cucumber in the three treatments decreased significantly during the experimental period (P < 0.05). The OCR of sea cucumber reduced in starvation and experimental aestivation treatments, but increased gradually in natural aestivation treatment. The activities of ACP and AKP of sea cucumber decreased gradually in all treatments, whereas those of SOD and CAT as well as Hsp70 content decreased in the starvation and experimental aestivation treatments and increased in natural aestivation treatment. The sea cucumber entered a state of aestivation at 24℃. To some extent, the animals in experimental aestivation were different from those in natural aestivation in metabolism and physiological response. These findings suggested that the aestivation mechanism of A. japonicus is complex and may not be attributed to the elevated temperature only. 展开更多
关键词 Apostichopus japonicus Selenka STARVATION AESTIVATION GROWTH oxygen consumption rate physiological response heat shock protein
下载PDF
The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid 被引量:2
10
作者 CHEN Xiao-ting LIN Jie +3 位作者 SHAO Xue-feng OU Xiao-ming WANG Zong-hua LU Guo-dong 《Agricultural Sciences in China》 CAS CSCD 2009年第7期828-834,共7页
Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants... Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants respond to OA stress still needs further characterization. In this study, we observed the physiological and molecular responses of Arabidopsis thaliana to OA stress. The leaves of 6-wk-old A. thaliana were sprayed with OA and distilled water respectively, and 0, 2, 4, 8, 12, and 24 h later, the leaves were collected and the contents of MDA, H2O2, and GSH, and the activities of CAT, SOD, and POD were determined and the expressions of PR1 and PDF1.2 were also studied. Under the stress of 30 mmol L-1 OA, SOD activity was first enhanced to reduce the accumulation of O2.-. But immediately, POD, CAT, and GSH all decreased extremely resulting in the accumulation of H2O2, and the MDA content increased 24 h later. GSH activity was enhanced significantly at 24 h after OA used. However, H2O2 wasn't eliminated at the same time, suggesting that the activity inhibitions of POD and CAT might be the reasons that caused Arabidopsis cells' impairment under OA stress. RT-PCR results indicated that PDF1.2, a marker gene of the JA/ET signaling was significantly induced; PR1, an indicator gene in SA signaling, was slighlty induced from 8 to 12 h after OA stress. In conclusion, Arabidopsis may recruit metabolism of reactive oxygen, both JA/ET and SA signaling pathways to respond to OA stress. These results will facilitate our further understanding the mechanisms of plant response to OA and OA-dependent fungal infection. 展开更多
关键词 Arabidopsis thaliana oxalic acid physiological response signaling pathway
下载PDF
Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain,China 被引量:3
11
作者 LIU Xue-jing YIN Bao-zhong +3 位作者 HU Zhao-hui BAO Xiao-yuan WANG Yan-dong ZHEN Wen-chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2343-2359,共17页
In order to identify the optimum period of spring water-restrictive irrigation for winter wheat(Triticum aestivum L.)in the Haihe Plain,China and elucidate its effects on flag leaf senescence and yield formation,field... In order to identify the optimum period of spring water-restrictive irrigation for winter wheat(Triticum aestivum L.)in the Haihe Plain,China and elucidate its effects on flag leaf senescence and yield formation,field experiments were conducted at the Xinji Experimental Station of Hebei Agricultural University from 2016 to 2019 by using different irrigation regimes in spring,including the conventional regime involving two irrigation periods(control(CK),the 3-leaf unfolding stage and the anthesis stage)and a series of single,restrictive irrigation regimes(SRI)comprising irrigation at the 3-leaf unfolding stage(3 LI),4 LI,5 LI,and 6 LI.There are five major findings:(1)The senescence(determined by the green leaf area,GLA)in the 4 LI treatment occurred moderately earlier than that in CK,showed no significant difference with that in 5 LI and 6 LI,and occurred significantly later than that in 3 LI.(2)Compared with other SRI treatments,the GLA value and photosynthetic rate in 4 LI were 14.82 and 20.1%higher,respectively.Microstructural analysis of flag leaf also revealed that the mesophyll cells and chloroplasts were irregularly arranged under drought stress in 3 LI and 6 LI;however,drought stress had minimal negative effects on the microstructure in 4 LI and 5 LI.(3)Postponed irrigation in spring could significantly increase superoxide dismutase(SOD)and catalase(CAT)activities in the early stage of grain filling;however,these activities would subsequently decrease.Among the four SRI treatments,the overall enzyme activities were the highest in 4 LI,and the combined malondialdehyde(MDA)content in flag leaves in 4 LI and 5 LI was 14.5%lower on average than that in 3 LI and 6 LI.(4)The soluble sugar(SS)and proline(Pro)contents in 4 LI were the highest among the four SRI treatments;however,they were lower than those in CK.The abscisic acid(ABA)hormone content in 4 LI and 5 LI was lower than that in 3 LI and 6 LI,respectively,suggesting a smaller drought stress effect in 4 LI and 5 LI.(5)In two growing seasons,there was a larger number of spikes per unit area in 4 LI(i.e.,13.4%higher than that in 5 LI and 6 LI)and the 1000-grain weight in 4 LI was the highest among the four SRI treatments(i.e.,6.0%higher than that in the other three SRI treatments).Therefore,a single restrictive irrigation regime at the 4-leaf unfolding stage is recommended to be effective in slowing down the senescence process of flag leaves and achieving high yield. 展开更多
关键词 winter wheat restrictive irrigation flag leaf physiological response yield formation
下载PDF
Size-and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress 被引量:2
12
作者 WANG Chunyuan YU Minghan +4 位作者 DING Guodong GAO Guanglei ZHANG Linlin HE Yingying LIU Wei 《Journal of Arid Land》 SCIE CSCD 2021年第7期744-758,共15页
Drought is one of the most significant natural disasters in the arid and semi-arid areas of China.Populations or plant organs often differ in their responses to drought and other adversities at different growth stages... Drought is one of the most significant natural disasters in the arid and semi-arid areas of China.Populations or plant organs often differ in their responses to drought and other adversities at different growth stages.At present,little is known about the size-and leaf age-dependent differences in the mechanisms of shrub-related drought resistance in the deserts of China.Here,we evaluated the photosynthetic and physiological responses of Artemisia ordosica Krasch.to drought stress using a field experiment in Mu Us Sandy Land,Ningxia Hui Autonomous Region,China in 2018.Rainfall was manipulated by installing outdoor shelters,with four rainfall treatments applied to 12 plots(5 m×5 m).There were four rainfall levels,including a control and rainfall reductions of 30%,50%and 70%,each with three replications.Taking individual crown size as the dividing basis,we measured the responses of A.ordosica photosynthetic and physiological responses to drought at different growth stages,i.e.,large-sized(>0.5 m^(2))and small-sized(≤0.5 m^(2))plants.The leaves of A.ordosica were divided into old leaves and young leaves for separate measurement.Results showed that:(1)under drought stress,the transfer efficiency of light energy captured by antenna pigments to the photosystem II(PSII)reaction center decreased,and the heat dissipation capacity increased simultaneously.To resist the photosynthetic system damage caused by drought,A.ordosica enhanced its free radical scavenging capacity by activating its antioxidant enzyme system;and(2)growth stage and leaf age had effects on the reaction of the photosynthetic system to drought.Small A.ordosica plants could not withstand severe drought stress(70%rainfall reduction),whereas large A.ordosica individuals could absorb deep soil water to ensure their survival in severe drought stressed condition.Under 30%and 50%rainfall reduction conditions,young leaves had a greater ability to resist drought than old leaves,whereas the latter were more resistant to severe drought stress.The response of A.ordosica photosynthetic system reflected the trade-off at different growth stages and leaf ages of photosynthetic production under different degrees of drought.This study provides a more comprehensive and systematic perspective for understanding the drought resistance mechanisms of desert plants. 展开更多
关键词 drought stress age difference plant size PHOTOSYNTHESIS physiological response survival strategy
下载PDF
Effects of oxygen concentration and flow rate on cognitive ability and physiological responses in the elderly 被引量:1
13
作者 Hyun-Jun Kim Hyun-Kyung Park +7 位作者 Dae-Woon Lim Mi-Hyun Choi Hyun-Joo Kim In-Hwa Lee Hyung-Sik Kim Jin-Seung Choi Gye-Rae Tack Soon-Cheol Chung 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第3期264-269,共6页
The supply of highly concentrated oxygen positively affects cognitive processing in normal young adults. However, there have been few reports on changes in cognitive ability in elderly subjects following highly concen... The supply of highly concentrated oxygen positively affects cognitive processing in normal young adults. However, there have been few reports on changes in cognitive ability in elderly subjects following highly concentrated oxygen administration. This study investigated changes in cognitive ability, blood oxygen saturation (%), and heart rate (beats/min) in normal elderly subjects at three different levels of oxygen [21% (1 L/min), 93% (1 L/min), and 93% (5 L/min)] administered during a 1-back task. Eight elderly male (75.3 + 4.3 years old) and 10 female (71.1 + 3.9 years old) subjects, who were normal in cognitive ability as shown by a score of more than 24 points in the Mini-Mental State Examination-Korea, participated in the experiment. The experiment consisted of an adaptation phase after the start of oxygen administration (3 minutes), a control phase to obtain stable baseline measurements of heart rate and blood oxygen saturation before the task (2 minutes) and a task phase during which the 1-back task was performed (2 minutes). Three levels of oxygen were administered throughout the three phases (7 minutes). Blood oxygen saturation and heart rate were measured during each phase. Our results show that blood oxygen saturation increased, heart rate decreased, and response time in the 1-back task decreased as the concentration and amount of administered oxygen increased. This shows that administration of sufficient oxygen for optimal cognitive functioning increases blood oxygen saturation and decreases heart rate. 展开更多
关键词 neural regeneration clinical practice highly concentrated oxygen cognitive task 1-back task cognitive ability blood oxygen saturation heart rate physiological responses ELDERLY grant-supported paper NEUROREGENERATION
下载PDF
Physiological and Molecular Analyses of Low-Salinity Stress Response in the Cuttlefish(Sepia pharaonis)Juveniles 被引量:1
14
作者 XIN Hongwei WU Kunlan +5 位作者 YUAN Yimeng ZHAO Yun SONG Weiwei WANG Chunlin MU Changkao LI Ronghua 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第4期969-976,共8页
As a stenohaline species,the survival of Sepia pharaonis can be affected by salinity significantly.This study aimed to explore the function of decreasing salinity on the survival of Sepia pharaonis,which can provide a... As a stenohaline species,the survival of Sepia pharaonis can be affected by salinity significantly.This study aimed to explore the function of decreasing salinity on the survival of Sepia pharaonis,which can provide an advanced production guide on the culture of S.pharaonis in the rainy season.Salinity was gradually decreased from 29 to 22 within 48 h to acclimate S.pharaonis to a low-salinity environment.After ten days of breeding under low-salinity of 22,the death rate was high.In this process,changes in tissue and cell structures in the larval liver,biochemical indicators,and osmoregulation-related gene expression were examined.In-terestingly,hepatocytes in the low-salinity group were irregular,had dissolved tissue inclusions,and contained vacuolized cells.There-fore,low salinity caused severe damages at a cellular level that can elevate the mortality rate.A gradual decline in salinity limited the full adaptation of S.pharaonis.Biochemical indicators and osmoregulation-related gene expression changed similarly.For instance,the trend of malondialdehyde(MAD)as a product of lipid peroxidation reflected the degree of damage to the body by free radicals.The antioxidant system of S.pharaonis could cope with oxidative stress caused by the change in salinity to a certain extent.Osmo-regulation-related genes’expression also showed an optimistic result,that is,S.pharaonis responded positively to the change in sali-nity by adjusting the expression of osmoregulation-related genes.Conversely,the increase in mortality at day 10 also proved the weak adaptation capability of S.pharaonis.This study indicated that S.pharaonis can adapt to a low-salinity environment with a li-mited extent. 展开更多
关键词 Sepia pharaonis low salinity physiological responses biochemical indicators osmoregulation-related genes
下载PDF
Comparison in copper accumulation and physiological responses of Gracilaria lemaneiformis and G. lichenoides (Rhodophyceae) 被引量:1
15
作者 黄鹤忠 梁建生 +3 位作者 吴小松 张皓 李倩倩 张群英 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第4期803-812,共10页
Heavy metal pollution has become a worldwide problem in aquaculture. We studied copper (Cu^2+) accumulation and physiological responses of two red algae Gracilaria lemaneiformis and Gracilaria lichenoides from Chin... Heavy metal pollution has become a worldwide problem in aquaculture. We studied copper (Cu^2+) accumulation and physiological responses of two red algae Gracilaria lemaneiformis and Gracilaria lichenoides from China under Cu^2+ exposure of 0-500 μg/L in concentration. Compared with G. lemaneiformis, G. lichenoides was more capable in accumulating Cu^2+, specifically, more Cu〉 on extracellular side (cell wall) than on intracellular side (cytoplasm) and in cell organelles (especially chloroplast, cell nucleus, mitochondria, and ribosome). In addition, G. lichenoides contained more insoluble polysaccharide in cell wall, which might promote the extracellular Cu^2+-binding as an efficient barrier against metal toxicity. Conversely, G. lemaneiformis was more vulnerable than G. lichenoides to Cu^2+ toxin for decreases in growth, pigment (chlorophyll a, chlorophyll b, phycobiliprotein, and B-carotene) content, and photosynthetic activity. Moreover, more serious oxidative damages in G. lemaneiformis than in G. lichenoides, in accumulation of reactive oxidative species and malondialdehyde, and in electrolyte leakage, because of lower antioxidant enzyme (superoxide dismutase and glutathione reductase) activities. Therefore, G. lichenoides was less susceptible to Cu〉 stress than G. lemaneiformis. 展开更多
关键词 copper (Ⅱ) pollution GRACILARIA physiological response reactive oxidative species chlorophyllfluorescence parameters
下载PDF
Screening of Rice Cultivars for Morpho-Physiological Responses to Early-Season Soil Moisture Stress 被引量:3
16
作者 Bhupinder SINGH Kambham Raja REDDY +1 位作者 Edilberto Diaz REDONA Timothy WALKER 《Rice science》 SCIE CSCD 2017年第6期322-335,共14页
The majority of rice(Oryza sativa L.) produced in the southern USA is drill-seeded and grown under upland-like conditions because permanent flooding is established after the four-leaf stage. Therefore, rice during the... The majority of rice(Oryza sativa L.) produced in the southern USA is drill-seeded and grown under upland-like conditions because permanent flooding is established after the four-leaf stage. Therefore, rice during the seedling growth stage will be subjected to variable soil moisture content. A greenhouse experiment was conducted to evaluate the performance of 15 rice cultivars commonly grown in Mississippi of USA under early-season soil moisture stress. Twenty morpho-physiological parameters of rice seedlings subjected to three different levels(100%, 66% and 33% field capacity) of soil moisture, from 10 to 30 d after sowing, were measured. Significant moisture stress × treatment interaction(P < 0.001) was observed for most of the parameters. Further, the total drought response index(TDRI) was developed to score the cultivars for drought tolerance with the variation from 26.88 to 36.21. Accordingly, the cultivars were classified into different groups of tolerance. The cultivars CL152 and CL142-AR were classified as the least and the most tolerant to drought based on TDRI and standard deviation, respectively. Even though both total root(R^2 = 0.98) or shoot(R^2 = 0.76) drought responses indices were positively correlated with TDRI, root traits were important in deriving the indices. Therefore, TDRI could be used to select cultivars for drought tolerance in a given environment and develop rice varieties with early-season drought tolerance. However, further research is needed to identify and characterize tolerance at other stages to assist breeding programs in rice. 展开更多
关键词 DROUGHT field capacity morpho-physiological parameter ORYZA SATIVA root SHOOT soil moisture content total DROUGHT response index
下载PDF
Effects of sand burial on survival and growth of Artemisia halodendron and its physiological response
17
作者 HaLin Zhao Hao Qu +2 位作者 RuiLian Zhou JianYing Yun Jin Li 《Research in Cold and Arid Regions》 CSCD 2015年第1期59-66,共8页
There is a great deal of literature on the effects of sand burial upon the survival and growth of desert plants, but the physiological adaption mechanisms of desert plants to sand burial have as yet rarely been studie... There is a great deal of literature on the effects of sand burial upon the survival and growth of desert plants, but the physiological adaption mechanisms of desert plants to sand burial have as yet rarely been studied. Artemisia halodendron is widely distributed in the semi-arid deserts of China and is a dominant species in semi-moving dune vegetation. The growth and physiological properties ofA. halodendron seedlings under different sand burial depths were studied in 2010 and 2011 in the Horqin Sand Land, Inner Mongolia, to better understand the ability and physiological mechanism by which desert plants withstand sand burial. The results showed that A. halodendron as a prammophyte species had a stronger ability to withstand sand burial compared to non-prammophytes, with some plants still surviving even if buried to a depth reaching 225% of seedling height. Although seedling growth was inhibited significantly once the depth of sand burial reached 50% of the seedling height, seedling survival did not decrease significantly until the burial depth exceeded 100% of the seedling height. Sand burial did not result in significant water stress or MDA (Malondialdehyde) accumulation in the seedlings, but membrane permeability increased significantly when the burial depth exceeded 100% of the seedling height. After being subjected to sand burial stress, POD (Peroxidase) activity and proline content increased significantly, but SOD (Superoxide Dismutase) and POD activities and soluble sugar content did not. The primary mechanism resulting in in- creased mortality and growth inhibition were that cell membranes were damaged and photosynthetic area decreased when subjected to the severe stress of sand burial, while proline and POD played key roles in osmotic adjustment and protecting cell membranes from damage, respectively. 展开更多
关键词 desert shrub sand burial survival rate GROWTH physiological response
下载PDF
Physiological responses of seedlings of two oak species to flooding stress
18
作者 HE Kai-yue YANG Jing HUANG Li-bin 《Forestry Studies in China》 CAS 2008年第4期259-264,共6页
The physiological responses of 2-year-old seedlings of Nuttall's oak (Quercus nuttallii) and Southern red oak (Q.falcata) with two treatments i.e., deep-drowning and shallow-drowning, were studied. Taxodium disti... The physiological responses of 2-year-old seedlings of Nuttall's oak (Quercus nuttallii) and Southern red oak (Q.falcata) with two treatments i.e., deep-drowning and shallow-drowning, were studied. Taxodium distichum was selected as a control. The survival rates of seedlings were calculated, the photosynthetic indices were detected by Licor-6400 photosynthetic system instrument, and the root activities of seedlings were tested by the method of triphenyltetrazolium chloride (TTC). Results showed that: 1) By experiencing flooding for 76 d and recovering for 60 d after water was drained off, all seedlings survived under the shallow-drowning treatment. None of Q. falcata seedlings died in the deep-drowning treatment until the 49th day. The survival rate of Q. falcata in the deep-drowning treatment was 30%. 2) Within 61 d of waterlogging treatments, the net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) showed a tendency of declining, but intercellular concentration of CO2 (Ci) increased. With the prolongation of flooding stress, the extents of variation for all indices under deep-drowning treatment were larger than those under the shallow-drowning treatment. The variation of Q. falcata in flooding stress was larger than that of Q. nuttallii. 3) The root vigor and alcohol dehydrogenase (ADH) activities were detected at the 61st day in flooding stress. Waterlogging obviously inhibited root activities. Shallow-drowning made root vigor of Q. nuttallii decreased by 11.7%, and for Q. falcata, by 51.88%. Shallow-drowning treatment had no remarkable effects on ADH activities of seedlings, but deep-drowning increased those of Q. nuttallii seedlings by 227.24%, and decreased those of Q. falcata seedlings by 59.22% in the meantime. We conclude that Q. nuttallii had a stronger waterlogging resistance than Q. falcata, but weaker than T. distichum. 展开更多
关键词 flooding stress QUERCUS waterlogging resistance physiological responses
下载PDF
Physiological Response to High Temperature and Evaluation of Heat Tolerance of Different Grape Cultivars
19
作者 Jiuyun WU Guixiang XU +5 位作者 Weijia LIAN Ya CHEN Haifeng LI Yongxiang LIU Jianfu JIANG Jinghui WEN 《Agricultural Biotechnology》 CAS 2022年第1期47-54,85,共9页
[Objectives]This study was conducted to investigate the differences in the physiological responses of different grape cultivars to high temperature.[Methods]The 19 tested cultivars were selected from the grape germpla... [Objectives]This study was conducted to investigate the differences in the physiological responses of different grape cultivars to high temperature.[Methods]The 19 tested cultivars were selected from the grape germplasm resources pool of Turpan Research Institute of Xinjiang Academy of Agricultural Sciences.Twelve physiological indexes including gas exchange parameters,chlorophyll content,antioxidant enzyme activity and proline content were determined in grape leaves under field conditions during the middle period of local natural high temperature period(July,daily maximum air temperature>35℃).The heat tolerance of different cultivars was evaluated by fuzzy membership function analysis and optimum partitioning clustering of ordered samples.[Results](1)Under natural high temperature conditions in Turpan,the 19 tested grape cultivars responded differently to high temperature.‘Red Globe’,‘Fujiminori’,‘Beta’,‘Hetianhuang’had strong heat tolerance,while‘Thompson Seedless’,‘Hongqi Tezaomeigui’,‘Shuijing Wuhe’,‘Victoria’,‘Yatomi Rosa’and‘Crimson Seedless’had weak heat tolerance.(2)Among the 12 physiological indexes,malondialdehyde content and antioxidant enzyme activity were mostly different among various grape cultivars.The grape cultivars with strong heat tolerance,‘Red Globe’and‘Fujiminori’,had relatively lower malondialdehyde contents,while‘Beta’and‘Hetianhuang’had relatively higher malondialdehyde contents.But they had higher activity of antioxidant enzymes.(3)The results of fuzzy membership function analysis showed that the cumulative membership value(AR)of each physiological index was consistent with its apparent heat tolerance performance,suggesting that AR can be a potential index for the evaluation of heat tolerance of grape cultivars.Further cluster analysis classified the tested cultivars as strong,medium and weak.‘Red Globe’,‘Fujiminori’,‘Beta’and‘Hetianhuang’had strong heat tolerance.[Conclusions]This study provides a reference for grape cultivation under high temperature and stress and breeding of heat-tolerant varieties. 展开更多
关键词 GRAPE physiological index High temperature response Heat tolerance
下载PDF
Physiological Response and Transcriptome Analysis of Cotton Leaves under Low Temperature Stress at the Two-leaf Stage
20
作者 Xiaoman WANG Jianbing ZENG +5 位作者 Qiongshan WANG Songbo XIA Xiaogang WANG Jiaohai ZHANG Youchang ZHANG Shu BIE 《Asian Agricultural Research》 2021年第3期40-47,共8页
[Objectives]To investigate the effect of low temperature treatment on cotton leaves at the two-leaf stage.[Methods]Two cotton varieties(CN01 and SJB016(low temperature-tolerant))were used as the trial materials.They w... [Objectives]To investigate the effect of low temperature treatment on cotton leaves at the two-leaf stage.[Methods]Two cotton varieties(CN01 and SJB016(low temperature-tolerant))were used as the trial materials.They were treated at 25(CK)and 12℃(low temperature)for 0,3,6,12,24,48 and 72 h,respectively.Then,the changes in the contents of MDA,SS and Pro in the cotton leaves were analyzed.Based on the analysis results,RNA-seq verification was performed.[Results]Two cotton varieties(CN01 and SJB016(low temperature-tolerant))were used as the trial materials.They were treated at 25(CK)and 12℃(low temperature)for 0,3,6,12,24,48 and 72 h,respectively.Then,the changes in the contents of MDA,SS and Pro in the cotton leaves were analyzed.Based on the analysis results,RNA-seq verification was performed.[Conclusions]These genes may play an important role in improving the cold resistance of cotton. 展开更多
关键词 Cotton leaf physiological response TRANSCRIPTOME Gene expression Low temperature stress
下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部