Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly...Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li.展开更多
BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To...BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients.展开更多
[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiolog...[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and severe saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under combined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccharides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).展开更多
The preceding parts of the review concerned kinanthropometric parameters, skeletal muscle recruitment, ergometry, systemic responses and adaptations. Main teachings of this third part of the whole review follow. At th...The preceding parts of the review concerned kinanthropometric parameters, skeletal muscle recruitment, ergometry, systemic responses and adaptations. Main teachings of this third part of the whole review follow. At the 1996 Atlanta Olympic Game, most vitamin users (91 percent) were boxers. After 18 days of endurance training at the altitude of 1800 m, in boxers, 1) erythropoietin and reticulocytes values increased, 2) remained unchanged parameters of iron metabolism and maximal oxygen uptake values, 3) iron supplementation decreased total body hemoglobin values. Zinc supplementation and/or regularity while boxing influenced plasma levels of calcium, copper, iron, magnesium, phosphorus and zinc in boxers. Sodium bicarbonate ingestion increased punches frequency and time to fatigue in boxers. Boxing-induced thermal dehydration yielded 1) body and muscle masses decrease compensated by increased neural input to muscle, to maintain muscle strength, but 2) a 26.8 percent performance fall. In boxers, fluid and food intake restriction 1) changed neither blood vitamin status nor plasma glutathione levels, 2) yielded a) a negative mood profile and a performance decrease, when resulted in body mass fall by 5.16 percent but b) no performance decrease when fall was by three percent. Diet protein or protein and caloric components decrease increased, in boxers, protein catabolism and, for the same submaximal workload, heart rate and oxygen intake. In food-restricted boxers, myoprotein catabolism increased with decreasing meal intake frequency. Competition and no-competition boxers utilize massage. Massage increased perceptions of recovery after a whole boxing performance. High level of cardiorespiratory fitness accelerates recovery process between boxing rounds.展开更多
In the article titled“Disentangling brain PrPC proteoforms and their roles in physiology and disease”,published on pages 963-965,Issue 5,Volume 19 of Neural Regeneration Research(Vanni and Romolo,2024;doi:10.4103/16...In the article titled“Disentangling brain PrPC proteoforms and their roles in physiology and disease”,published on pages 963-965,Issue 5,Volume 19 of Neural Regeneration Research(Vanni and Romolo,2024;doi:10.4103/1673-5374.385302),the name of the second author appears incorrectly.The correct name is Romolo Nonno.展开更多
This letter praises a recent article in the World Journal of Clinical Cases(Roles of biochemistry data,lifestyle,and inflammation in identifying abnormal renal function in old Chinese),examining factors affecting abno...This letter praises a recent article in the World Journal of Clinical Cases(Roles of biochemistry data,lifestyle,and inflammation in identifying abnormal renal function in old Chinese),examining factors affecting abnormal renal function in elderly Chinese using advanced machine learning.It highlights the importance of uric acid,age,hemoglobin,body mass index,sport hours,and systolic blood pressure.The study's holistic approach,integrating lifestyle and inflammation,offers a nuanced understanding of chronic kidney disease risk factors.The letter suggests exploring mechanistic pathways of hyperuricemia,the link between anemia and renal function,and the connection between body mass index and estimated glomerular filtration rate.It advocates investigating physical activity's impact on renal health and the independent effects of blood pressure.The study significantly contributes to chronic kidney disease understanding,proposing avenues for further exploration and interventions.Commendations are extended to the authors and the journal.展开更多
Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspect...Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions.展开更多
[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects...[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects of flooding stress on the growth and root physiological and biochemical characteristics of grafted and own-rooted red-seed watermelon seedlings were studied using Luffa as rootstocks and"Zhongxin 1"red-seed watermelon as scions.[Results]After flooding stress,the biomass and root activity of grafted seedlings of red-seed watermelon were significantly higher than those of own-rooted seedlings.With the prolongation of flooding stress time,the soluble sugar and proline content showed a trend of first increasing and then decreasing,and the grafted seedlings had a larger increase and a smaller decrease,and were always significantly higher than own-rooted seedlings in the same period.The content of malondialdehyde in the root system of grafted seedlings increased first and then decreased,while it continued to increase in own-rooted seedlings,and the increase in own-rooted seedlings was significantly greater than that in grafted seedlings during the same period.[Conclusions]Grafting on Luffa rootstocks could improve waterlogging tolerance of red-seed watermelon.展开更多
Biochemistry is a fundamental core course in disciplines such as agriculture,forestry,medicine,animal husbandry,veterinary medicine,and food science.By prioritizing"educating people"in the teaching process o...Biochemistry is a fundamental core course in disciplines such as agriculture,forestry,medicine,animal husbandry,veterinary medicine,and food science.By prioritizing"educating people"in the teaching process of this professional course,we can unearth diverse ideological and political elements related to agricultural production practices within the curriculum knowledge system and the forefront of discipline development.Exploring various teaching methods and utilizing diverse teaching tools are effective strategies to achieve ideological and political education that silently influences students in the field of biochemistry.The goal is to nurture students strong ideals and beliefs,fostering a deep connection to the sentiments of"agriculture,rural areas and farmers in a great nation."This approach aims to instill a sense of responsibility towards strengthening agriculture,shaping students into individuals from South China Agricultural University who possess lofty aspirations and the courage to shoulder responsibility in the new era.展开更多
[ Objective] The study aimed to investigate the effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under low tempera- ture stress. [ Method ] By using Dendrobium monilforme as the ex...[ Objective] The study aimed to investigate the effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under low tempera- ture stress. [ Method ] By using Dendrobium monilforme as the experimental material, different concentrations of Na2SiO3 (0, O. 2, 0.4, 0.6, 0.8, 1.0, 5.0 and 10.0 mmol/L) was added to the basic medium[ 1/2MS + 6-BA (0.1mg/L) + NAA ( 1 mg/L) + agar (7.2 g/L) + sucrose (30 g/L) ] for tissue culture; af- ter hardening and transplanting, Dendrobium moniliforme plantlets were treated under low temperature stress at 4 ~C for 0, 24 and 48 h, in order to investigate the physiological response of Dendrobium ranniliforme leaves to different concentrations of Na2SiO3. [ Result] Under low temperature stress at 4℃, Dendrob/um mon//i- fortns leaves have certain osmotic regulation ability, and the three osmotic regulation substances show different variation trends at different stages. Appropriate con- centration of NshSiO3 can increase the contents of free proline, soluble sugar and soluble protein to varying degrees, reduce MDA content and further improve the cold resistance of Dendrobium moniliforme plantlets. The order of the effects of Na2SiO~ on various physiological indicators is : free proline 〉 MDA 〉 soluble sugar (or soluble protein). According to the correlation analysis among various physiological indicators, free proline, soluble sugar, soluble protein and MDA contents can all be used as reference indicators to identify the cold resistance of Dendrobium moniliforme. [ Conclusion] The addition of Na2SiO3 (0.4 retool/L) can moder- ately decrease the thermal energy for normal growth of Dendrobium moniliforme, which is conducive to reducing the cost of cultivation. Key words Na2SiO3 ;Dendrobium monlifforme;Low temperature stress;Physiological and biochemical characteristics展开更多
The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), c...The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), catalase (CAT), peroxidase (POD)) and ultrastructure of the cells of Azolla imbricata (Roxb.) Nakai were studied. The results showed that with Hg2+ and Cd2+ increase, chlorophyll content and chlorophyll a/b value, photosynthetic O-2 evolution decreased drastically; respiration rate peaked at 2 mg/L pollutant and declined afterwards. The activities of SOD, CAT and POD increased first and decreased afterwards except the activity of POD, which decreased with the increasing of Cd2+ concentration. Ultrastructural observation showed that the extent of ultrastructural damage was much more serious with higher pollutant concentration and longer time of stress. This resulted in swelling of chloroplast, disruption and disappearance of chloroplast membrane and disintegration of chloroplasts; swelling of cristae of mitochondria, deformation and vacuolization of mitochondria; condensation of chromatin in nucleus, dispersion of nucleolus and disruption of nuclear membrane. The experimental results showed: (1) Hg2+ and Cd2+ pollution not only destroyed physiological activities, but also caused irreversible damage to its ultrastructure, thus leading the cells to death; (2) With increase in the stress of Hg2+ and Cd2+, ultrastructural damage was related to the changes of plant physiology; (3) The toxic symptoms of plant showed an evident correlation between dose and effect; (4) The toxicity of Cd2+ on A. imbricata is heavier than that of Hg2+ under the same treatment time and concentration. The lethal concentration of Hg2+ to A. imbricata ranged from 3.5 to 4 mg/L, and that of Cd2+ ranged from 3 to 3.5 mg/L. The damage of cell ultrastructure on Anabaena azollae Strasburger was observed. The results indicated that tolerance of Azolla imbricata for Hg2+ and Cd2+ was higher than that of A. imbricata.展开更多
Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) +...Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.展开更多
The amount of root bleeding sap, contents of chlorophyl , nutrients and hormones in flag leaves of a super-hybrid rice cultivar Liangyoupeijiu (LYPJ) and its parents 9311 and Pei’ai 64S after heading were measured ...The amount of root bleeding sap, contents of chlorophyl , nutrients and hormones in flag leaves of a super-hybrid rice cultivar Liangyoupeijiu (LYPJ) and its parents 9311 and Pei’ai 64S after heading were measured in this study. The re-sults revealed that compared with 9311, the chlorophyl content of LYPJ reduced more quickly after heading, and then kept at a lower level, which was an obvious characteristic of premature senescence. The other physiological indices of LYPJ af-ter heading except abscisic acid (ABA) content in leaf and root also maintained at a lower level than 9311, while al the physiological indices of the sterile line Pei'ai 64S were lower than LYPJ. So it was speculated that the early-aging characteristic of LYPJ may be inherited from Pei’ai 64S. Al the leaf and root early-aging traits reduced for LYPJ and its parent lines after heading, their leaf and root aged grad-ual y, which indicated that the above-ground (leaf) and under-ground (root) parts cor-related to each other closely, but there was not absolute correlations between them judged from the data.展开更多
The liver experiences various changes with aging that could affect clinical characteristics and outcomes in patients with liver diseases.Both liver volume and blood flow decrease significantly with age.These changes a...The liver experiences various changes with aging that could affect clinical characteristics and outcomes in patients with liver diseases.Both liver volume and blood flow decrease significantly with age.These changes and decreased cytochrome P450 activity can affect drug metabolism,increasing susceptibility to drug-induced liver injury.Immune responses against pathogens or neoplastic cells are lower in the elderly,although these individuals may be predisposed to autoimmunity through impairment of dendritic cell maturation and reduction of regulatory T cells.These changes in immune functions could alter the pathogenesis of viral hepatitis and autoimmune liver diseases,as well as the development of hepatocellular carcinoma.Moreover,elderly patients have significantly decreased reserve functions of various organs,reducing their tolerability to treatments for liver diseases.Collectively,aged patients show various changes of the liver and other organs that could affect the clinical characteristics and management of liver diseases in these patients.展开更多
In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine sy...In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.展开更多
Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice...Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice (Oryza sativa L.). Higher root biomass, root oxidation activity, and cytokinin contents in roots are required for achieving more panicle number, more spikelets per panicle, greater grain-filling percentage, and higher grain yield. However, these root traits are not linearly correlated with yield components. When these traits reach very high levels, grain filling and grain yield are not necessarily enhanced. High numbers of mitochondria, Golgi bodies, and amyloplasts in root tip cells benefit root and shoot growth and yield formation. Proper crop management, such as an alternate wetting and moderate soil drying irrigation, can significantly improve ultra-structure of root tip cells, increase root length density and concentration of cytokinins in root bleedings, and consequently, increase grain-filling percentage, grain yield, and water use efficiency. Further studies are needed to investigate the mechanism underlying root-shoot and root-soil interactions for high grain yield, the roles of root-sourced hormones in regulating crop growth and development and the effects of soil moisture and nutrient management on the root architecture and physiology.展开更多
Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully...Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully understood. To identify the differences of root morphology, physiology and endogenous hormones at different growing stages, two maize inbred lines 90-21-3 (tolerance to K deficiency) and D937 (sensitive to K deficiency) were cultivated in the long-term K fertilizer experimental pool under high potassium (+K) and low potassium (-K) treatments. The results indicated that the root length, volume and surface area of 90-21-3 were significantly higher than those of D937 under -K treatment at different growing stages. It was noteworthy that the lateral roots of 90-21-3 were dramatically higher than those of D937 at tasselling and flowering stage under-K treatment. Meanwhile, the values of superoxide dismutase (SOD) and oxidizing force of 90-21-3 were apparently higher than those of D937, whereas malondialdehyde (MDA) content of D937 was obviously increased. Compared with +K treatment, the indole-3-acetic acid (IAA) content of 90-21-3 was largely increased under-K treatment, whereas it was sharply decreased in D937. On the contrary, abscisic acid (ABA) content of 90-21-3 was slightly increased, but that of D937 was significantly increased. The zeatin riboside (ZR) content of 90-21-3 was significantly decreased, while that of D937 was relatively increased. These results indicated that the endogenous hormones were stimulated in 90-21-3 to adjust lateral root development and to maintain the physiology function thereby alleviating K deficiency.展开更多
AIM: To investigate coping mechanisms, constipation symptoms and anorectal physiology in 80 constipated subjects and 18 controls.METHODS: Constipation was diagnosed by Rome Ⅱ criteria.Coping ability and anxiety/depre...AIM: To investigate coping mechanisms, constipation symptoms and anorectal physiology in 80 constipated subjects and 18 controls.METHODS: Constipation was diagnosed by Rome Ⅱ criteria.Coping ability and anxiety/depression were assessed by validated questionnaires. Transit time and balloon distension test were performed.RESULTS: 34.5% patients were classified as slow transit type of constipation. The total colonic transit time (56 h vs 10 h, P<0.0001) and rectal sensation including urge sensation (79 mL vs 63 mL, P = 0.019) and maximum tolerable volume (110 mL vs95 mL, P = 0.03) differed in patients and controls. Constipated subjects had significantly higher anxiety and depression scores and lower SF-36 scores in all categories. They also demonstrated higher scores of'monitoring' coping strategy (14+6 vs9+3, P = 0.001),which correlated with the rectal distension sensation (P = 0.005), urge sensation (P=0.002), and maximum tolerable volume (P = 0.035). The less use of blunting strategy predicted slow transit constipation in both univariate (P = 0.01) and multivariate analysis (P = 0.03).CONCLUSION: Defective or ineffective use of coping strategies may be an important etiology in functional constipation and subsequently reflected in abnormal anorectal physiology.展开更多
Aim: To evaluate whether the study of seminal germ cell morphology (SGCM) and semen biochemistry could befruitfully utilized for the diagnosis and management of azoospermic subjects. Methods: In the semen, mature andi...Aim: To evaluate whether the study of seminal germ cell morphology (SGCM) and semen biochemistry could befruitfully utilized for the diagnosis and management of azoospermic subjects. Methods: In the semen, mature andimmature germ cells are contributed by the testes, 70% of glycerylphosphoryl choline (GPC) by the epididymis, fruc-tose mostly or solely by the seminal vesicles and acid phosphate (ACP) by the prostate. In 16 normal volunteers, 12vasectomized subjects and 186 azoospennic subjects, these parameters have been studied and the data have been ana-lyzed. Results: Both mature and immature germ cells are absent in the semen of vasectomized subjects as well as inobstructive azoospennia; GPC level is also significantly decreased in both these groups. In cases with non-obstructiveazoospermia immature germ cells are present and seminal GPC, ACP and fructose levels are normal. The diagnosis ofobstructive and non-obstructive azoospermia based on these parameters correlated well with 'correct' testicular biopsyfindings. In some cases of azoospermia due to hypospermatogenesis or spermatogenic developmental arrest, the SGCMstudies were very helpful in objectively monitoring the response of the germinal tissue to specific treaunents. Conclu-sion: SGCM and semen biochemical parameters are very valuable non-invasive markers for differentiating obstructivefrom non-obstructive azoospermia. The SGCM findings serve as a dependable non-invasive testicular marker with highpredictive value. (Asian J Androl 2001 Mar; 3: 55-62)展开更多
Olfaction is one of our 5 main qualitative sensory abilities. In this review, we have examined the physiology of olfaction from the olfactory receptor to the brain. Through analyzing the physiology of olfaction, we ha...Olfaction is one of our 5 main qualitative sensory abilities. In this review, we have examined the physiology of olfaction from the olfactory receptor to the brain. Through analyzing the physiology of olfaction, we have found that the biochemistry of olfactory nerve stimulation is unique from that of other similar pathways. Upon receiving large amounts of input from the olfactory nerve, the olfactory bulb, followed by several layers of centrifugal and centripetal processing in the brain, has to sort the information from the input as well as integrate it with other inputs from the brain to develop a coherent understanding of the input. We then examined the implications of olfaction in the military, the practical applications of electronic noses and problems associated with injury to olfaction that could affect compensation and combat worthiness of a soldier following injury. In the military, olfaction can allow the army to perform at its best through 4 main methods, namely ensuring olfaction is consistent with other dimensions of perception(ensuring optimal olfaction ability in all soldiers in combat), understanding the impact of different common combat environments on the sense of smell, utilizing odor as a defense mechanism and using olfactory aids when necessary. Electronic noses are olfactory aids that have a large potential in the military ranging from saving lives through the detection of explosives to potential methods for improving combustion efficiency. There are several problems associated with injury to olfaction that should be considered when deciding on compensation and combat worthiness of the soldier following an injury.展开更多
基金This work was funded by Chongqing Municipal Technology Innovation and Application Development Program(cstc2020jscx-gksb0001)Yunnan Academician(Expert)Workstation Project(202105AF150073).
文摘Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li.
文摘BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients.
文摘[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and severe saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under combined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccharides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).
文摘The preceding parts of the review concerned kinanthropometric parameters, skeletal muscle recruitment, ergometry, systemic responses and adaptations. Main teachings of this third part of the whole review follow. At the 1996 Atlanta Olympic Game, most vitamin users (91 percent) were boxers. After 18 days of endurance training at the altitude of 1800 m, in boxers, 1) erythropoietin and reticulocytes values increased, 2) remained unchanged parameters of iron metabolism and maximal oxygen uptake values, 3) iron supplementation decreased total body hemoglobin values. Zinc supplementation and/or regularity while boxing influenced plasma levels of calcium, copper, iron, magnesium, phosphorus and zinc in boxers. Sodium bicarbonate ingestion increased punches frequency and time to fatigue in boxers. Boxing-induced thermal dehydration yielded 1) body and muscle masses decrease compensated by increased neural input to muscle, to maintain muscle strength, but 2) a 26.8 percent performance fall. In boxers, fluid and food intake restriction 1) changed neither blood vitamin status nor plasma glutathione levels, 2) yielded a) a negative mood profile and a performance decrease, when resulted in body mass fall by 5.16 percent but b) no performance decrease when fall was by three percent. Diet protein or protein and caloric components decrease increased, in boxers, protein catabolism and, for the same submaximal workload, heart rate and oxygen intake. In food-restricted boxers, myoprotein catabolism increased with decreasing meal intake frequency. Competition and no-competition boxers utilize massage. Massage increased perceptions of recovery after a whole boxing performance. High level of cardiorespiratory fitness accelerates recovery process between boxing rounds.
文摘In the article titled“Disentangling brain PrPC proteoforms and their roles in physiology and disease”,published on pages 963-965,Issue 5,Volume 19 of Neural Regeneration Research(Vanni and Romolo,2024;doi:10.4103/1673-5374.385302),the name of the second author appears incorrectly.The correct name is Romolo Nonno.
文摘This letter praises a recent article in the World Journal of Clinical Cases(Roles of biochemistry data,lifestyle,and inflammation in identifying abnormal renal function in old Chinese),examining factors affecting abnormal renal function in elderly Chinese using advanced machine learning.It highlights the importance of uric acid,age,hemoglobin,body mass index,sport hours,and systolic blood pressure.The study's holistic approach,integrating lifestyle and inflammation,offers a nuanced understanding of chronic kidney disease risk factors.The letter suggests exploring mechanistic pathways of hyperuricemia,the link between anemia and renal function,and the connection between body mass index and estimated glomerular filtration rate.It advocates investigating physical activity's impact on renal health and the independent effects of blood pressure.The study significantly contributes to chronic kidney disease understanding,proposing avenues for further exploration and interventions.Commendations are extended to the authors and the journal.
文摘Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions.
基金Supported by"Watermelon and Muskmelon Germplasm Innovation and Genetic Improvement"Post of Guangxi Bagui Scholars(2016A11)。
文摘[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects of flooding stress on the growth and root physiological and biochemical characteristics of grafted and own-rooted red-seed watermelon seedlings were studied using Luffa as rootstocks and"Zhongxin 1"red-seed watermelon as scions.[Results]After flooding stress,the biomass and root activity of grafted seedlings of red-seed watermelon were significantly higher than those of own-rooted seedlings.With the prolongation of flooding stress time,the soluble sugar and proline content showed a trend of first increasing and then decreasing,and the grafted seedlings had a larger increase and a smaller decrease,and were always significantly higher than own-rooted seedlings in the same period.The content of malondialdehyde in the root system of grafted seedlings increased first and then decreased,while it continued to increase in own-rooted seedlings,and the increase in own-rooted seedlings was significantly greater than that in grafted seedlings during the same period.[Conclusions]Grafting on Luffa rootstocks could improve waterlogging tolerance of red-seed watermelon.
基金Supported by Guangdong Provincial Teaching Quality and Teaching Reform Project in 2021.
文摘Biochemistry is a fundamental core course in disciplines such as agriculture,forestry,medicine,animal husbandry,veterinary medicine,and food science.By prioritizing"educating people"in the teaching process of this professional course,we can unearth diverse ideological and political elements related to agricultural production practices within the curriculum knowledge system and the forefront of discipline development.Exploring various teaching methods and utilizing diverse teaching tools are effective strategies to achieve ideological and political education that silently influences students in the field of biochemistry.The goal is to nurture students strong ideals and beliefs,fostering a deep connection to the sentiments of"agriculture,rural areas and farmers in a great nation."This approach aims to instill a sense of responsibility towards strengthening agriculture,shaping students into individuals from South China Agricultural University who possess lofty aspirations and the courage to shoulder responsibility in the new era.
基金Supported by College-level Fund of Sichuan Agricultural University(64070113)
文摘[ Objective] The study aimed to investigate the effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under low tempera- ture stress. [ Method ] By using Dendrobium monilforme as the experimental material, different concentrations of Na2SiO3 (0, O. 2, 0.4, 0.6, 0.8, 1.0, 5.0 and 10.0 mmol/L) was added to the basic medium[ 1/2MS + 6-BA (0.1mg/L) + NAA ( 1 mg/L) + agar (7.2 g/L) + sucrose (30 g/L) ] for tissue culture; af- ter hardening and transplanting, Dendrobium moniliforme plantlets were treated under low temperature stress at 4 ~C for 0, 24 and 48 h, in order to investigate the physiological response of Dendrobium ranniliforme leaves to different concentrations of Na2SiO3. [ Result] Under low temperature stress at 4℃, Dendrob/um mon//i- fortns leaves have certain osmotic regulation ability, and the three osmotic regulation substances show different variation trends at different stages. Appropriate con- centration of NshSiO3 can increase the contents of free proline, soluble sugar and soluble protein to varying degrees, reduce MDA content and further improve the cold resistance of Dendrobium moniliforme plantlets. The order of the effects of Na2SiO~ on various physiological indicators is : free proline 〉 MDA 〉 soluble sugar (or soluble protein). According to the correlation analysis among various physiological indicators, free proline, soluble sugar, soluble protein and MDA contents can all be used as reference indicators to identify the cold resistance of Dendrobium moniliforme. [ Conclusion] The addition of Na2SiO3 (0.4 retool/L) can moder- ately decrease the thermal energy for normal growth of Dendrobium moniliforme, which is conducive to reducing the cost of cultivation. Key words Na2SiO3 ;Dendrobium monlifforme;Low temperature stress;Physiological and biochemical characteristics
文摘The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), catalase (CAT), peroxidase (POD)) and ultrastructure of the cells of Azolla imbricata (Roxb.) Nakai were studied. The results showed that with Hg2+ and Cd2+ increase, chlorophyll content and chlorophyll a/b value, photosynthetic O-2 evolution decreased drastically; respiration rate peaked at 2 mg/L pollutant and declined afterwards. The activities of SOD, CAT and POD increased first and decreased afterwards except the activity of POD, which decreased with the increasing of Cd2+ concentration. Ultrastructural observation showed that the extent of ultrastructural damage was much more serious with higher pollutant concentration and longer time of stress. This resulted in swelling of chloroplast, disruption and disappearance of chloroplast membrane and disintegration of chloroplasts; swelling of cristae of mitochondria, deformation and vacuolization of mitochondria; condensation of chromatin in nucleus, dispersion of nucleolus and disruption of nuclear membrane. The experimental results showed: (1) Hg2+ and Cd2+ pollution not only destroyed physiological activities, but also caused irreversible damage to its ultrastructure, thus leading the cells to death; (2) With increase in the stress of Hg2+ and Cd2+, ultrastructural damage was related to the changes of plant physiology; (3) The toxic symptoms of plant showed an evident correlation between dose and effect; (4) The toxicity of Cd2+ on A. imbricata is heavier than that of Hg2+ under the same treatment time and concentration. The lethal concentration of Hg2+ to A. imbricata ranged from 3.5 to 4 mg/L, and that of Cd2+ ranged from 3 to 3.5 mg/L. The damage of cell ultrastructure on Anabaena azollae Strasburger was observed. The results indicated that tolerance of Azolla imbricata for Hg2+ and Cd2+ was higher than that of A. imbricata.
文摘Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303102)the Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(12)3042]~~
文摘The amount of root bleeding sap, contents of chlorophyl , nutrients and hormones in flag leaves of a super-hybrid rice cultivar Liangyoupeijiu (LYPJ) and its parents 9311 and Pei’ai 64S after heading were measured in this study. The re-sults revealed that compared with 9311, the chlorophyl content of LYPJ reduced more quickly after heading, and then kept at a lower level, which was an obvious characteristic of premature senescence. The other physiological indices of LYPJ af-ter heading except abscisic acid (ABA) content in leaf and root also maintained at a lower level than 9311, while al the physiological indices of the sterile line Pei'ai 64S were lower than LYPJ. So it was speculated that the early-aging characteristic of LYPJ may be inherited from Pei’ai 64S. Al the leaf and root early-aging traits reduced for LYPJ and its parent lines after heading, their leaf and root aged grad-ual y, which indicated that the above-ground (leaf) and under-ground (root) parts cor-related to each other closely, but there was not absolute correlations between them judged from the data.
文摘The liver experiences various changes with aging that could affect clinical characteristics and outcomes in patients with liver diseases.Both liver volume and blood flow decrease significantly with age.These changes and decreased cytochrome P450 activity can affect drug metabolism,increasing susceptibility to drug-induced liver injury.Immune responses against pathogens or neoplastic cells are lower in the elderly,although these individuals may be predisposed to autoimmunity through impairment of dendritic cell maturation and reduction of regulatory T cells.These changes in immune functions could alter the pathogenesis of viral hepatitis and autoimmune liver diseases,as well as the development of hepatocellular carcinoma.Moreover,elderly patients have significantly decreased reserve functions of various organs,reducing their tolerability to treatments for liver diseases.Collectively,aged patients show various changes of the liver and other organs that could affect the clinical characteristics and management of liver diseases in these patients.
基金supported by the Provincial Natural Science Foundation of Zhejiang (Grant No. Y3100270)the Twelfth Five-Year Science and Technology Project (Grant No. 2011BAD16B14)
文摘In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.
基金supported by the National Natural Science Foundation of China (31061140457, 31071360)the National Basic Research Program of China (2009CB118603)+3 种基金the Natural Science Foundation of Jiangsu Province, China(BK2009-005)the Key Technologies R&D Program of Chinaduring the 12th Five-Year Plan period (2011BAD16B14)the Program of Advantage Discipline of Jiangsu Provincethe Hong Kong Research Grants Council, China (HKBU262809)
文摘Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice (Oryza sativa L.). Higher root biomass, root oxidation activity, and cytokinin contents in roots are required for achieving more panicle number, more spikelets per panicle, greater grain-filling percentage, and higher grain yield. However, these root traits are not linearly correlated with yield components. When these traits reach very high levels, grain filling and grain yield are not necessarily enhanced. High numbers of mitochondria, Golgi bodies, and amyloplasts in root tip cells benefit root and shoot growth and yield formation. Proper crop management, such as an alternate wetting and moderate soil drying irrigation, can significantly improve ultra-structure of root tip cells, increase root length density and concentration of cytokinins in root bleedings, and consequently, increase grain-filling percentage, grain yield, and water use efficiency. Further studies are needed to investigate the mechanism underlying root-shoot and root-soil interactions for high grain yield, the roles of root-sourced hormones in regulating crop growth and development and the effects of soil moisture and nutrient management on the root architecture and physiology.
基金supported by the Program for Liaoning Excellent Talents in University, China (LR2013032)the National Natural Science Foundation of China (31301259, 31101106)the Tianzhu Mountian Scholars Support Plan of Shenyang Agricultural University, China
文摘Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully understood. To identify the differences of root morphology, physiology and endogenous hormones at different growing stages, two maize inbred lines 90-21-3 (tolerance to K deficiency) and D937 (sensitive to K deficiency) were cultivated in the long-term K fertilizer experimental pool under high potassium (+K) and low potassium (-K) treatments. The results indicated that the root length, volume and surface area of 90-21-3 were significantly higher than those of D937 under -K treatment at different growing stages. It was noteworthy that the lateral roots of 90-21-3 were dramatically higher than those of D937 at tasselling and flowering stage under-K treatment. Meanwhile, the values of superoxide dismutase (SOD) and oxidizing force of 90-21-3 were apparently higher than those of D937, whereas malondialdehyde (MDA) content of D937 was obviously increased. Compared with +K treatment, the indole-3-acetic acid (IAA) content of 90-21-3 was largely increased under-K treatment, whereas it was sharply decreased in D937. On the contrary, abscisic acid (ABA) content of 90-21-3 was slightly increased, but that of D937 was significantly increased. The zeatin riboside (ZR) content of 90-21-3 was significantly decreased, while that of D937 was relatively increased. These results indicated that the endogenous hormones were stimulated in 90-21-3 to adjust lateral root development and to maintain the physiology function thereby alleviating K deficiency.
文摘AIM: To investigate coping mechanisms, constipation symptoms and anorectal physiology in 80 constipated subjects and 18 controls.METHODS: Constipation was diagnosed by Rome Ⅱ criteria.Coping ability and anxiety/depression were assessed by validated questionnaires. Transit time and balloon distension test were performed.RESULTS: 34.5% patients were classified as slow transit type of constipation. The total colonic transit time (56 h vs 10 h, P<0.0001) and rectal sensation including urge sensation (79 mL vs 63 mL, P = 0.019) and maximum tolerable volume (110 mL vs95 mL, P = 0.03) differed in patients and controls. Constipated subjects had significantly higher anxiety and depression scores and lower SF-36 scores in all categories. They also demonstrated higher scores of'monitoring' coping strategy (14+6 vs9+3, P = 0.001),which correlated with the rectal distension sensation (P = 0.005), urge sensation (P=0.002), and maximum tolerable volume (P = 0.035). The less use of blunting strategy predicted slow transit constipation in both univariate (P = 0.01) and multivariate analysis (P = 0.03).CONCLUSION: Defective or ineffective use of coping strategies may be an important etiology in functional constipation and subsequently reflected in abnormal anorectal physiology.
文摘Aim: To evaluate whether the study of seminal germ cell morphology (SGCM) and semen biochemistry could befruitfully utilized for the diagnosis and management of azoospermic subjects. Methods: In the semen, mature andimmature germ cells are contributed by the testes, 70% of glycerylphosphoryl choline (GPC) by the epididymis, fruc-tose mostly or solely by the seminal vesicles and acid phosphate (ACP) by the prostate. In 16 normal volunteers, 12vasectomized subjects and 186 azoospennic subjects, these parameters have been studied and the data have been ana-lyzed. Results: Both mature and immature germ cells are absent in the semen of vasectomized subjects as well as inobstructive azoospennia; GPC level is also significantly decreased in both these groups. In cases with non-obstructiveazoospermia immature germ cells are present and seminal GPC, ACP and fructose levels are normal. The diagnosis ofobstructive and non-obstructive azoospermia based on these parameters correlated well with 'correct' testicular biopsyfindings. In some cases of azoospermia due to hypospermatogenesis or spermatogenic developmental arrest, the SGCMstudies were very helpful in objectively monitoring the response of the germinal tissue to specific treaunents. Conclu-sion: SGCM and semen biochemical parameters are very valuable non-invasive markers for differentiating obstructivefrom non-obstructive azoospermia. The SGCM findings serve as a dependable non-invasive testicular marker with highpredictive value. (Asian J Androl 2001 Mar; 3: 55-62)
文摘Olfaction is one of our 5 main qualitative sensory abilities. In this review, we have examined the physiology of olfaction from the olfactory receptor to the brain. Through analyzing the physiology of olfaction, we have found that the biochemistry of olfactory nerve stimulation is unique from that of other similar pathways. Upon receiving large amounts of input from the olfactory nerve, the olfactory bulb, followed by several layers of centrifugal and centripetal processing in the brain, has to sort the information from the input as well as integrate it with other inputs from the brain to develop a coherent understanding of the input. We then examined the implications of olfaction in the military, the practical applications of electronic noses and problems associated with injury to olfaction that could affect compensation and combat worthiness of a soldier following injury. In the military, olfaction can allow the army to perform at its best through 4 main methods, namely ensuring olfaction is consistent with other dimensions of perception(ensuring optimal olfaction ability in all soldiers in combat), understanding the impact of different common combat environments on the sense of smell, utilizing odor as a defense mechanism and using olfactory aids when necessary. Electronic noses are olfactory aids that have a large potential in the military ranging from saving lives through the detection of explosives to potential methods for improving combustion efficiency. There are several problems associated with injury to olfaction that should be considered when deciding on compensation and combat worthiness of the soldier following an injury.