期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
REGULARITY PROPERTY OF SOLUTION TO TWO-PARAMETER STOCHASTIC VOLTERRA EQUATION WITH NON-LIPSCHITZ COEFFICIENTS
1
作者 姜国 王湘君 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期872-882,共11页
This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in t... This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in the plane. Moreover, we also discuss the time regularity property of the solution by Kolmogorov's continuity criterion. 展开更多
关键词 stochastic Volterra equation Brownian sheet Bihari's inequality NON-LIPsCHITZ picard's approximation
下载PDF
Solution of Nonlinear Stochastic Langevin’s Equation Using WHEP, Pickard and HPM Methods
2
作者 Maha Hamed Magdy A. El-Twail +1 位作者 Beih El-desouky Mohamed A. El-Beltagy 《Applied Mathematics》 2014年第3期398-412,共15页
This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion ... This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion with perturbation (WHEP) technique, and the results are compared with those of Picard iterations and the homotopy perturbation method (HPM). The WHEP technique is used to obtain up to fourth order approximation for different number of corrections. The mean and variance of the solution are obtained and compared among the different methods, and some parametric studies are done by using Matlab. 展开更多
关键词 NONLINEAR sTOCHAsTIC D.E Langevin’s Equation WHEP TECHNIQUE picard approximation HPM TECHNIQUE
下载PDF
关于一个积分方程解的存在唯一性证明
3
作者 郭迎娜 赵军 《安阳工学院学报》 2006年第1期71-74,共4页
对于一个积分方程,研究其解的存在唯一性是十分重要的。用Picard逼近法和Banach不动点定理证明给定的积分方程φ,当|λ|足够小时,该方程在[a,b]上存在唯一的连续解。Picard逼近法的要点是建立一个逼近序列,然后考察这个序列取值范围、... 对于一个积分方程,研究其解的存在唯一性是十分重要的。用Picard逼近法和Banach不动点定理证明给定的积分方程φ,当|λ|足够小时,该方程在[a,b]上存在唯一的连续解。Picard逼近法的要点是建立一个逼近序列,然后考察这个序列取值范围、一致收敛性和极限的存在唯一性。应用Banach不动点定理的要点是:首先建立一个压缩映射,然后再考察其解空间的完备性。 展开更多
关键词 解的唯一性 picard逼近法 BANACH不动点定理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部