The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave...The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.展开更多
Using in situ measurement data from May-June, 1998, and data from the Asian seas international acoustics experiment (ASIAEX) from 2001 in the South China Sea (SCS), the spectral density function and the dissipa- t...Using in situ measurement data from May-June, 1998, and data from the Asian seas international acoustics experiment (ASIAEX) from 2001 in the South China Sea (SCS), the spectral density function and the dissipa- tion spectrum function are estimated. In the inffa-gravity wave (IGW) band, the power spectra of velocity (u, v, w) are universal functions with respect to characteristic frequencies, which correspond to the peak fre- quencies of the dissipation spectrum (PFDS). This suggests that high-frequency internal waves in the IGW band have similar dynamical characteristics. In addition, the evolution of these characteristic frequencies is explored and its highest value is 8.8 cph (cycles per hour, 1 cph=2.778× 10-3 Hz).展开更多
The second-order small slope approximation (SSA2) method is introduced to study the Doppler characteristics from time-evolving sea surfaces. Simulation results show better agreement between the SSA2 model and the nu...The second-order small slope approximation (SSA2) method is introduced to study the Doppler characteristics from time-evolving sea surfaces. Simulation results show better agreement between the SSA2 model and the numerical method for both vertical and horizontal polarizations, meaning that SSA2 gives a satisfactory prediction of the spectral difference between two po- larizations; while such discrepancy cannot be captured using the lowest-order SSA (SSA1) model. In particular, the Doppler shifts and spectral widths for different incident angles, wind directions and polarizations are analyzed, demonstrating correct variations with respect to such parameters. Those observations prove that the SSA2 provides an efficient and relatively fast tool for sea surface Doppler spectral analysis.展开更多
Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The result...Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The results show that the significant wave height (H1/3) varies from 0.15 to 2.22 m with the average of 0.59 m and the mean wave period (Tmean) varies from 2.06 to 6.82 s with the average of 3.71 s. The percentage of single peak in the wave spectra is 88.6 during the measurement period, in which 36.3% of the waves are pure wind waves and the rest are young swells. The percentage with the significant wave height larger than 1 m is 12.4. The dominant wave directions in the study area are WNW, W, ESE, E and NW. The relationships among the characteristic wave heights, the characteristic wave periods, and the wave spectral parameters are identified. It is found that the tentative spectral model is suitable for the quantitative description of the wave spectrum in the study area, while the run lengths of the wave group estimated from the measured data are generally larger than those in other sea areas.展开更多
The metazoan meiofauna in the Chukchi Sea were collected from seven shallow water stations (depths rang- ing 46 to 52 m) and five deep sea stations (depths ranging between 393 and 2 300 m) during the 4th Chinese N...The metazoan meiofauna in the Chukchi Sea were collected from seven shallow water stations (depths rang- ing 46 to 52 m) and five deep sea stations (depths ranging between 393 and 2 300 m) during the 4th Chinese National Arctic Research Expedition in 2010. The results showed that abundance of meiofauna was higher in shallow water sediments (average of 2445 ind./(10 cm2)) than in deep sea sediments (407.06 ind./(10 cm2)). A UNIANOVA test for difference between the two different regions was highly significant (F=10h 15, p〈0.Ol). Nematodes were numerically dominant, representing (96.6±4.6)% of the total meiofaunal abundance at the shallow water stations and (98.90±1.42)% at deep sea stations. The number of higher taxonomic groups and abundance of meiofauna were higher at Stas CC1, CC4, and R06 near the Bering Strait and the continent, than at the rest of the shallow water and deep sea stations. The primary factors causing the differences were concentrations of nutrients P and Si of bottom seawater (R=0.831, p〈0.003), followed by depth (R=-0.655, p〈0.05) and sand fractions of sediments (R=0.632, p 〈0.05). The numbers of meiofauna on the 65 lam and 32 llm sieves were significantly higher than those on the rest of the screens. Differences in numbers of meiofauna retained on screens with different mesh openings were highly significant among all sampling stations (F=31.60, p〈0.01). The highest numbers of individuals on screens with 32 μm mesh openings were found at deep sea stations. The number of meiofauna in the top 6-1, 1-2, and 2-4 cm segments constituted 84.4% of the total and was significantly higher than those in the bottom 4-6 and 6-10 cm segments (F=15, p〈0.01).展开更多
We used a set of 75-day long ADCP data from the northeastern South China Sea(SCS) to investigate nonlinear interactions among freely propagating internal tidal waves.The kinetic energy spectra displayed significant pe...We used a set of 75-day long ADCP data from the northeastern South China Sea(SCS) to investigate nonlinear interactions among freely propagating internal tidal waves.The kinetic energy spectra displayed significant peaks at some higher tidal frequencies,such as O1M2(O1+M2),and M4(M2 +M2),where O1 is the lunar diurnal internal tide,M2 is the lunar semidiurnal internal tide,and M4 is the first higher harmonic frequency of M2.These higher tidal harmonic frequency peaks,as well as the fundamental tidal harmonic peaks,show a σ-2.3 spectral falloff rate with frequency.In addition,we explored the possible generation mechanism of higher tidal harmonics.Analysis on the rotary and bicoherence spectra suggests that strong forced non-resonant interaction induced by nonlinear advections was the dominant physical mechanism that induced these higher tidal harmonics.Moreover,the energetic,freely propagating semidiurnal(M2) internal tidal wave played the most crucial role in these interactions.These results indicate that strong nonlinear forced non-resonant interactions among internal tides can be one of the processes responsible for the redistribution of energy in the internal wave spectrum.展开更多
Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes re...Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes relate to the velocity of the small elementary scatterers on sea surface profiles. Therefore, modeling Doppler spectra from the ocean requires an accurate description of the sea surface motion. The profile of nonlinear Gerstners sea surface shows verticalskewness of sea waves, it is sharper at the crest and flatter at the trough than linear waves, and its maximum slope position is closer to the crest than to the trough. Furthermore, the horizontal component of the small elementary scatterers orbit velocity on the sea surface, which yields noticeable influence on Doppler spectra, can be obtained conveniently by Gerstners sea surface model. In this study the characteristics of Doppler spectra of backscattered fields from time-varying Gerstners sea surface are investigated and the dependences of the Doppler frequency and the Doppler bandwidth on the parameters, such as the wind speed, the radar frequency, the incident angle, etc. are discussed. It is shown that the Doppler bandwidth of microwave scattered fields from Gerstners sea surface is considerably broadened. For the case of high frequency backscattered fields, the values of the higher-order spectrum peaks are larger than those obtained by linear sea surface.展开更多
Seasonal variations and causes for these were elaborated for fishery resources in Shenzhen sea area,to provide scientific basis for sustainable utilization and management of fishery resources in typical fisheries of S...Seasonal variations and causes for these were elaborated for fishery resources in Shenzhen sea area,to provide scientific basis for sustainable utilization and management of fishery resources in typical fisheries of South China Sea coasts. Based on the data of fishery resources collected through trawl surveys in Egong Bay fisheries area,Shenzhen,from August( autumn) and December( winter) of 2012 to March(spring) and May(summer) of 2013,seasonal variation of nekton species composition,stock density,dominant species composition,size spectra and biodiversity were studied. Results showed that there were 113 species of nekton in Shenzhen sea area,which belonged to 78 genus,50 families,14 orders and 3 classes. The number of species was the largest in summer(61 species) and smallest in autumn(53 species). In spring and winter,there was 56 species. The stock density and individual density of nekton were the minimum in summer(5950. 20 kg/km2 and 356. 45 ind/km2,respectively),whereas the percentage of fish stock density and individual density were the highest in summer(51. 99%and 42. 19%). The seasonal variations of size spectra indicated that fishing intensity was the highest in autumn,and was the lowest in summer. Additionally,biodiversity index presented significant seasonal variations,including Shannon-Wiener diversity index( H '),Margalef richness index( D') and Pielou evenness index( J'),with the same trend as summer > spring > autumn > winter. In conclusion,there are clear seasonal variations in the nekton species,biomass and structure in Egong Bay fisheries area in Shenzhen. Due to the difference in fishing intensity in different seasons( low intensity in summer and high intensity in autumn),community structure and function in summer are more stable than that in autumn and winter. Particularly,with the increase in the fishing intensity in autumn,k selection species will be replaced by r selection species.展开更多
Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“crit...Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“critical”latitude of 28.8°.These enhanced near-diurnal internal waves followed a fortnightly spring-neap cycle.However,they always happened during semidiurnal spring tides rather than diurnal springs although strong diurnal internal tides with the fortnightly spring-neap cycle were prevailing,suggesting that they were generated via subharmonic instability(PSI)of dominant semidiurnal M 2 internal tides.When two semidiurnal internal tidal waves with opposite vertical propagation direction intersected,both semidiurnal subharmonic and super harmonic waves were largely intensifi ed.The observed maximum diurnal velocity amplitudes were up to 0.25 m/s.The kinetic energy and shear spectra further suggested that frequencies of daughter waves were not always perfectly equal to M 2/2.The superposition of two daughter waves with nearly equal frequencies and nearly opposite k z in a PSI-triad leaded to the vertically-standing waves.展开更多
In Light of the analysis of the physical implication and underlying assumption of the bandwidth parameter epsilon of wave spectrum, a time-averaging method is used to evaluate epsilon of the JONSWAP spectrum for diffe...In Light of the analysis of the physical implication and underlying assumption of the bandwidth parameter epsilon of wave spectrum, a time-averaging method is used to evaluate epsilon of the JONSWAP spectrum for different sea states. The resulting values of epsilon, which vary from 0.44 to 0.53 depending on the dimensionless fetch, are physically meaningful and reasonable. The same method is also used to compute epsilon from wind-wave records measured in a flume under different wind speeds at different fetches. The computed values of epsilon, which vary with wind fetches and speeds too, are compared with those evaluated for the JONSWAP spectrum.展开更多
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(Nos.41376027,41406017,U1406401,41421005)
文摘The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.
基金The National Basic Research Program of China under contract No.2011 CB403505the National Natural Science Foundation of China under contract Nos U1033002,41276021 and 10972229
文摘Using in situ measurement data from May-June, 1998, and data from the Asian seas international acoustics experiment (ASIAEX) from 2001 in the South China Sea (SCS), the spectral density function and the dissipa- tion spectrum function are estimated. In the inffa-gravity wave (IGW) band, the power spectra of velocity (u, v, w) are universal functions with respect to characteristic frequencies, which correspond to the peak fre- quencies of the dissipation spectrum (PFDS). This suggests that high-frequency internal waves in the IGW band have similar dynamical characteristics. In addition, the evolution of these characteristic frequencies is explored and its highest value is 8.8 cph (cycles per hour, 1 cph=2.778× 10-3 Hz).
基金supported by the National Natural Science Foundation of China (40771133)
文摘The second-order small slope approximation (SSA2) method is introduced to study the Doppler characteristics from time-evolving sea surfaces. Simulation results show better agreement between the SSA2 model and the numerical method for both vertical and horizontal polarizations, meaning that SSA2 gives a satisfactory prediction of the spectral difference between two po- larizations; while such discrepancy cannot be captured using the lowest-order SSA (SSA1) model. In particular, the Doppler shifts and spectral widths for different incident angles, wind directions and polarizations are analyzed, demonstrating correct variations with respect to such parameters. Those observations prove that the SSA2 provides an efficient and relatively fast tool for sea surface Doppler spectral analysis.
文摘Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The results show that the significant wave height (H1/3) varies from 0.15 to 2.22 m with the average of 0.59 m and the mean wave period (Tmean) varies from 2.06 to 6.82 s with the average of 3.71 s. The percentage of single peak in the wave spectra is 88.6 during the measurement period, in which 36.3% of the waves are pure wind waves and the rest are young swells. The percentage with the significant wave height larger than 1 m is 12.4. The dominant wave directions in the study area are WNW, W, ESE, E and NW. The relationships among the characteristic wave heights, the characteristic wave periods, and the wave spectral parameters are identified. It is found that the tentative spectral model is suitable for the quantitative description of the wave spectrum in the study area, while the run lengths of the wave group estimated from the measured data are generally larger than those in other sea areas.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No.CHINARE2012-03-05the Ocean Public Welfare Scientific Research Project of China under contract No.201105022-2the Polar Science Strategic Research Foundation of China under contract No.20120105
文摘The metazoan meiofauna in the Chukchi Sea were collected from seven shallow water stations (depths rang- ing 46 to 52 m) and five deep sea stations (depths ranging between 393 and 2 300 m) during the 4th Chinese National Arctic Research Expedition in 2010. The results showed that abundance of meiofauna was higher in shallow water sediments (average of 2445 ind./(10 cm2)) than in deep sea sediments (407.06 ind./(10 cm2)). A UNIANOVA test for difference between the two different regions was highly significant (F=10h 15, p〈0.Ol). Nematodes were numerically dominant, representing (96.6±4.6)% of the total meiofaunal abundance at the shallow water stations and (98.90±1.42)% at deep sea stations. The number of higher taxonomic groups and abundance of meiofauna were higher at Stas CC1, CC4, and R06 near the Bering Strait and the continent, than at the rest of the shallow water and deep sea stations. The primary factors causing the differences were concentrations of nutrients P and Si of bottom seawater (R=0.831, p〈0.003), followed by depth (R=-0.655, p〈0.05) and sand fractions of sediments (R=0.632, p 〈0.05). The numbers of meiofauna on the 65 lam and 32 llm sieves were significantly higher than those on the rest of the screens. Differences in numbers of meiofauna retained on screens with different mesh openings were highly significant among all sampling stations (F=31.60, p〈0.01). The highest numbers of individuals on screens with 32 μm mesh openings were found at deep sea stations. The number of meiofauna in the top 6-1, 1-2, and 2-4 cm segments constituted 84.4% of the total and was significantly higher than those in the bottom 4-6 and 6-10 cm segments (F=15, p〈0.01).
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos.KZCX1-YW-12-02 and YZ200745)the National Natural Science Foundation of China (Nos.40776008,40976010)
文摘We used a set of 75-day long ADCP data from the northeastern South China Sea(SCS) to investigate nonlinear interactions among freely propagating internal tidal waves.The kinetic energy spectra displayed significant peaks at some higher tidal frequencies,such as O1M2(O1+M2),and M4(M2 +M2),where O1 is the lunar diurnal internal tide,M2 is the lunar semidiurnal internal tide,and M4 is the first higher harmonic frequency of M2.These higher tidal harmonic frequency peaks,as well as the fundamental tidal harmonic peaks,show a σ-2.3 spectral falloff rate with frequency.In addition,we explored the possible generation mechanism of higher tidal harmonics.Analysis on the rotary and bicoherence spectra suggests that strong forced non-resonant interaction induced by nonlinear advections was the dominant physical mechanism that induced these higher tidal harmonics.Moreover,the energetic,freely propagating semidiurnal(M2) internal tidal wave played the most crucial role in these interactions.These results indicate that strong nonlinear forced non-resonant interactions among internal tides can be one of the processes responsible for the redistribution of energy in the internal wave spectrum.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40906088)the National Natural Science Foundation of China (Grant No. 60971067)Specialised Research Fund for the Doctoral Program of Higher Education (Grant No. 200804231021)
文摘Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes relate to the velocity of the small elementary scatterers on sea surface profiles. Therefore, modeling Doppler spectra from the ocean requires an accurate description of the sea surface motion. The profile of nonlinear Gerstners sea surface shows verticalskewness of sea waves, it is sharper at the crest and flatter at the trough than linear waves, and its maximum slope position is closer to the crest than to the trough. Furthermore, the horizontal component of the small elementary scatterers orbit velocity on the sea surface, which yields noticeable influence on Doppler spectra, can be obtained conveniently by Gerstners sea surface model. In this study the characteristics of Doppler spectra of backscattered fields from time-varying Gerstners sea surface are investigated and the dependences of the Doppler frequency and the Doppler bandwidth on the parameters, such as the wind speed, the radar frequency, the incident angle, etc. are discussed. It is shown that the Doppler bandwidth of microwave scattered fields from Gerstners sea surface is considerably broadened. For the case of high frequency backscattered fields, the values of the higher-order spectrum peaks are larger than those obtained by linear sea surface.
基金Supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2012BAD18B01&2012BAD18B02)Science and Technology Planning Project of Shenzhen(JSGG20141015154342147&JCYJ20160331141759795)
文摘Seasonal variations and causes for these were elaborated for fishery resources in Shenzhen sea area,to provide scientific basis for sustainable utilization and management of fishery resources in typical fisheries of South China Sea coasts. Based on the data of fishery resources collected through trawl surveys in Egong Bay fisheries area,Shenzhen,from August( autumn) and December( winter) of 2012 to March(spring) and May(summer) of 2013,seasonal variation of nekton species composition,stock density,dominant species composition,size spectra and biodiversity were studied. Results showed that there were 113 species of nekton in Shenzhen sea area,which belonged to 78 genus,50 families,14 orders and 3 classes. The number of species was the largest in summer(61 species) and smallest in autumn(53 species). In spring and winter,there was 56 species. The stock density and individual density of nekton were the minimum in summer(5950. 20 kg/km2 and 356. 45 ind/km2,respectively),whereas the percentage of fish stock density and individual density were the highest in summer(51. 99%and 42. 19%). The seasonal variations of size spectra indicated that fishing intensity was the highest in autumn,and was the lowest in summer. Additionally,biodiversity index presented significant seasonal variations,including Shannon-Wiener diversity index( H '),Margalef richness index( D') and Pielou evenness index( J'),with the same trend as summer > spring > autumn > winter. In conclusion,there are clear seasonal variations in the nekton species,biomass and structure in Egong Bay fisheries area in Shenzhen. Due to the difference in fishing intensity in different seasons( low intensity in summer and high intensity in autumn),community structure and function in summer are more stable than that in autumn and winter. Particularly,with the increase in the fishing intensity in autumn,k selection species will be replaced by r selection species.
基金Supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)the National Natural Science Foundation of China(Nos.41630970,41876016,41676022,41521005)+2 种基金the Natural Science Foundation of Zhejiang(No.LR20D060001)the Instrument Developing Project of the CAS(No.YZ201432)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1915)。
文摘Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“critical”latitude of 28.8°.These enhanced near-diurnal internal waves followed a fortnightly spring-neap cycle.However,they always happened during semidiurnal spring tides rather than diurnal springs although strong diurnal internal tides with the fortnightly spring-neap cycle were prevailing,suggesting that they were generated via subharmonic instability(PSI)of dominant semidiurnal M 2 internal tides.When two semidiurnal internal tidal waves with opposite vertical propagation direction intersected,both semidiurnal subharmonic and super harmonic waves were largely intensifi ed.The observed maximum diurnal velocity amplitudes were up to 0.25 m/s.The kinetic energy and shear spectra further suggested that frequencies of daughter waves were not always perfectly equal to M 2/2.The superposition of two daughter waves with nearly equal frequencies and nearly opposite k z in a PSI-triad leaded to the vertically-standing waves.
基金National Natural Science Foundation of China(Grant No.49676277)
文摘In Light of the analysis of the physical implication and underlying assumption of the bandwidth parameter epsilon of wave spectrum, a time-averaging method is used to evaluate epsilon of the JONSWAP spectrum for different sea states. The resulting values of epsilon, which vary from 0.44 to 0.53 depending on the dimensionless fetch, are physically meaningful and reasonable. The same method is also used to compute epsilon from wind-wave records measured in a flume under different wind speeds at different fetches. The computed values of epsilon, which vary with wind fetches and speeds too, are compared with those evaluated for the JONSWAP spectrum.