A novel active vibration control technique on the basis of linearized piezoelectric actuators is presented. An experimental apparatus consisting of a cantilever beam to which are attached strain patches and piezoceram...A novel active vibration control technique on the basis of linearized piezoelectric actuators is presented. An experimental apparatus consisting of a cantilever beam to which are attached strain patches and piezoceramic actuators to be used for active vibration suppression is described. A dynamical model of the cantilever beam using Lagrange's equation and two coordinate systems are presented. Based on the Lyapunov's direct method, an active vibration controller with hysteresis compensation is designed. The controller is designed so that it guarantees the global stability of the overall system. The controller developed is assessed experimentally.展开更多
In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a ...In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.展开更多
Macro-fiber composite actuators(MFCAs)suffer from strict restrictions on the utilization of lead-containing precursors due to growing environmental concerns.To address this issue,a novel lead-free MFCA based on potass...Macro-fiber composite actuators(MFCAs)suffer from strict restrictions on the utilization of lead-containing precursors due to growing environmental concerns.To address this issue,a novel lead-free MFCA based on potassium sodium niobate piezoceramics has been developed using the dice&fill method.The MFCA demonstrates large electric field-induced displacement(31.4μm over-500-1500 V at 0.5 Hz),excellent frequency stability,and a strong linear relationship between the induced displacement and the external voltage amplitude.Meanwhile,unlike lead-based MFCA that requires superposition of a negative dc bias voltage to pursue higher output performance but risks depolarization,lead-free MFCA can achieve larger displacement by superimposing only a positive bias voltage.This device exhibits excellent reliability,maintaining a stable output over 10^(5) electrical cycles.Additionally,a“back-to-back”coupled MFCA has been developed to regulate bidirectional displacement,making it suitable for various practical applications,including active vibration control.This approach has resulted in a 90%vibration reduction and provides new insights into the design of MFCAs,further facilitating their application in active vibration control systems.展开更多
Liquid migrating into existing concrete cracks is a serious problem for the reliability of concrete structures and can sometimes induce full concrete structural failures.In this paper,the authors present recent resear...Liquid migrating into existing concrete cracks is a serious problem for the reliability of concrete structures and can sometimes induce full concrete structural failures.In this paper,the authors present recent research on water presence detection in concrete cracks using piezoceramic-based smart aggregate(SA)transducers.The active sensing approach,in which one piezoceramic transducer is used to generate stress waves and others are used to detect the stress wave responses,is adopted in this research.Cracks formed in concrete structures act as stress reliefs,which attenuate the energy of the signals received by the SAs.In case of a crack being filled with liquid,which changes the wave impedance,the piezoceramic transducers will report higher received energy levels.A wavelet packet-based approach is developed to provide calculated energy values of the received signal.These different values can help detect the liquid presence in a concrete crack.A concrete beam specimen with three embedded SAs was fabricated and tested.Experimental results verified that the SA-based active sensing approach can detect a concrete crack and further detect the liquid presence in the concrete crack.展开更多
文摘A novel active vibration control technique on the basis of linearized piezoelectric actuators is presented. An experimental apparatus consisting of a cantilever beam to which are attached strain patches and piezoceramic actuators to be used for active vibration suppression is described. A dynamical model of the cantilever beam using Lagrange's equation and two coordinate systems are presented. Based on the Lyapunov's direct method, an active vibration controller with hysteresis compensation is designed. The controller is designed so that it guarantees the global stability of the overall system. The controller developed is assessed experimentally.
基金Funded by the National Natural Science Foundation of China (No.50708065)the National High-tech R&D Program(863 Program )(No.2007-AA-11-Z-113)the Key Projects in the Science and Technology Pillar Program of Tianjin(No.11ZCKFSF00300)
文摘In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.
基金supported by the Basic Research Project of Science and Technology of Shanghai(No.20JC1415000)the National Natural Science Foundation of China(No.52032012).
文摘Macro-fiber composite actuators(MFCAs)suffer from strict restrictions on the utilization of lead-containing precursors due to growing environmental concerns.To address this issue,a novel lead-free MFCA based on potassium sodium niobate piezoceramics has been developed using the dice&fill method.The MFCA demonstrates large electric field-induced displacement(31.4μm over-500-1500 V at 0.5 Hz),excellent frequency stability,and a strong linear relationship between the induced displacement and the external voltage amplitude.Meanwhile,unlike lead-based MFCA that requires superposition of a negative dc bias voltage to pursue higher output performance but risks depolarization,lead-free MFCA can achieve larger displacement by superimposing only a positive bias voltage.This device exhibits excellent reliability,maintaining a stable output over 10^(5) electrical cycles.Additionally,a“back-to-back”coupled MFCA has been developed to regulate bidirectional displacement,making it suitable for various practical applications,including active vibration control.This approach has resulted in a 90%vibration reduction and provides new insights into the design of MFCAs,further facilitating their application in active vibration control systems.
基金partially supported by the Science Fund for Creative Research Groups under Grant No.[51121005]a research project under Grant No.[51278084]from the National Science Foundation of China.
文摘Liquid migrating into existing concrete cracks is a serious problem for the reliability of concrete structures and can sometimes induce full concrete structural failures.In this paper,the authors present recent research on water presence detection in concrete cracks using piezoceramic-based smart aggregate(SA)transducers.The active sensing approach,in which one piezoceramic transducer is used to generate stress waves and others are used to detect the stress wave responses,is adopted in this research.Cracks formed in concrete structures act as stress reliefs,which attenuate the energy of the signals received by the SAs.In case of a crack being filled with liquid,which changes the wave impedance,the piezoceramic transducers will report higher received energy levels.A wavelet packet-based approach is developed to provide calculated energy values of the received signal.These different values can help detect the liquid presence in a concrete crack.A concrete beam specimen with three embedded SAs was fabricated and tested.Experimental results verified that the SA-based active sensing approach can detect a concrete crack and further detect the liquid presence in the concrete crack.