This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
Positioning with high precision piezoelectric actuators is widely used.To overcome positioning inaccuracy caused by hysteresis and creep of actuators,a precise tracking method for piezoelectric actuators using active ...Positioning with high precision piezoelectric actuators is widely used.To overcome positioning inaccuracy caused by hysteresis and creep of actuators,a precise tracking method for piezoelectric actuators using active disturbance rejection control(ADRC) has been proposed in this paper.This method,in real-time,actively estimates and compensates parameter uncertainties,nonlinear factors such as hysteresis,and external disturbances in the tracking system.Precise tracking of the piezoelectric actuator can be achieved without any form of feedforward compensations.The experimental results demonstrate that the active disturbance rejection controller can reduce tracking errors by over90%comparing with those using the PID controller.Those features of the proposed control method are very suitable for applications in adaptive optics.展开更多
Piezoelectric actuators are distributed on both side of a rectangular wing model,and the possibility of improvement of aircraft rolling power is investigated. The difference between the model with aileron deflection a...Piezoelectric actuators are distributed on both side of a rectangular wing model,and the possibility of improvement of aircraft rolling power is investigated. The difference between the model with aileron deflection and the model without aileron (fictitious control surface, FCS) is studied. The analytical results show that these two cases are substantial different. In aileron deflection case, the aeroelastic effect is disadvantageous, so the structural stiffness should be high until the electrical voltage is not necessary. But in the case of FCS,the aeroelastic effect is advantageous and it means that lower structural stiffness can lead to lower voltage. Compared with aileron project, the FCS project can save structure weight.展开更多
A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on...A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM.展开更多
The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in de...The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.展开更多
Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment proiects, including designing the wind tunnel mod...Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment proiects, including designing the wind tunnel model, checking the material constants, measuring the natural frequencies and checking the effects of actuators, guarantee the correctness and precision of the finite element model. The wind tunnel experiment results show that the calculations coincide with the experiments. The feasibility of fictitious control surface is validated.展开更多
Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the forc...Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezo electric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.展开更多
The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field ...The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present.展开更多
Piezoelectric actuators are a class of actuators that precisely transfer input electric energy into displacement,force,or movement outputs efficiently via inverse piezoelectric effect-based electromechanical coupling....Piezoelectric actuators are a class of actuators that precisely transfer input electric energy into displacement,force,or movement outputs efficiently via inverse piezoelectric effect-based electromechanical coupling.Various types of piezoelectric actuators have sprung up and gained widespread use in various applications in terms of compelling attributes,such as high precision,flexibility of stoke,immunity to electromagnetic interference,and structural scalability.This paper systematically reviews the piezoelectric materials,operating principles,representative schemes,characteristics,and potential applications of each mainstream type of piezoelectric actuator.Herein,we intend to provide a more scientific and nuanced perspective to classify piezoelectric actuators into direct and indirect categories with several subcategories.In addition,this review outlines the pros and cons and the future development trends for all kinds of piezoelectric actuators by exploring the relations and mechanisms behind them.The rich content and detailed comparison can help build an in-depth and holistic understanding of piezoelectric actuators and pave the way for future research and the selection of practical applications.展开更多
The ultra-precision field is popular for its micro-nanometer positioning accuracy and large working stroke.Piezoelectric actuators based on the stick-slip operational principle exhibit superior performance characteris...The ultra-precision field is popular for its micro-nanometer positioning accuracy and large working stroke.Piezoelectric actuators based on the stick-slip operational principle exhibit superior performance characteristics,making them stand out with unique advantages in this field.This paper provides a comprehensive review of the developments in stick-slip piezoelectric actuators over recent years.Starting with a detailed explanation of their operating principles,the article proceeds with a brief introduction to the more commonly used driving waveforms and their applications.Subsequently,various design and optimization technologies for existing com-pliant mechanisms are presented.Furthermore,stick-slip piezoelectric actuators are categorized based on different motion forms,including linear,rotary,and multi-degree of freedom types.Each category is thoroughly examined in terms of structural design and performance features.Following this,the discussion shifts toward controller method research and friction modeling analysis,featuring a particular emphasis on the advancements related to displacement back-lash suppression studies.This systematic summary aims to provide a reference for researchers within related fields,thereby facilitating the further development and application of stick-slip piezoelectric actuators.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect...Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.展开更多
The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a pi...The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.展开更多
In this paper, a novel rate-dependent Prandtl- Ishlinskii (P-I) model is proposed to characterize the rate- dependent hysteresis nonlinearity of piezoelectric actua- tors. The new model is based on a modified rate-d...In this paper, a novel rate-dependent Prandtl- Ishlinskii (P-I) model is proposed to characterize the rate- dependent hysteresis nonlinearity of piezoelectric actua- tors. The new model is based on a modified rate-dependent play operator, in which a dynamic envelope function is introduced to replace the input function of the classical play operator. Moreover, a dynamic density function is utilized in the proposed P-I model. The parameters of the proposed model are identified by a modified particle swarm optimization algorithm. Finally, experiments are conducted on a piezo-actuated nanopositioning stage to validate the proposed P-I model under the sinusoidal inputs. The experimental results show that the developed rate-dependent P-I model precisely characterize the rate- dependent hysteresis loops up to 1000 Hz.展开更多
In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes ...In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes to the static and dynamic response. In thepresent paper, an novel Enhanced Assumed Strain(EAS) piezoelectric solid element formulation isdeveloped for vibration active control of laminated structures bonded with piezoelectric sensors andactuators. Unlike the conventional brick elements, the present formulation is very reliable, moreaccurate, and computationally efficient and can be used to model the response of shell structuresbesides thin plates. Delaminations are modeled by pairs of nodes with the same coordinates butdifferent node numbers, and numerical results demonstrate the performance of the element and theglobal and local effects of debonding sensors/actuators on the dynamics of the adaptive laminates.展开更多
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc...This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.展开更多
This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamil...This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamilto's principle are applied to formulate the governing equation of structural system.The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling.The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method.With a specific control gain,the critical mechanical buckling load can remain constant at different temperatures.The effects of geometric parameters,fiber angle,stacking sequence,position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.展开更多
Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezo...Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezoelectric actuators always suffers from the emergence of several localized hinges with only one-node connection, which have difficulty satisfying manufacturing and machining requirements (from the over- or under-etching devices). The main purpose of the current paper is to propose a robust isogeometric topology optimization (RITO) method for the design of piezoelectric actuators, which can effectively remove the critical issue induced by one-node connected hinges and simultaneously maintain uniform manufacturability in the optimized topologies. In RITO, the isogeometric analysis replacing the conventional finite element method is applied to compute the unknown electro elastic fields in piezoelectric materials, which can improve numerical accuracy and then enhance iterative stability. The erode–dilate operator is introduced in topology representation to construct the eroded, intermediate, and dilated density distribution functions by non-uniform rational B-splines. Finally, the RITO formulation for the design of piezoelectric materials is developed, and several numerical examples are performed to test the effectiveness and efficiency of the proposed RITO method.展开更多
This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the mode...This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.展开更多
Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and ...Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and unimorph(or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator–based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator–based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator–based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator–based sensor is more suitable for hard materials.展开更多
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金Supported by the National Natural Science Foundation of China(No.11373048)
文摘Positioning with high precision piezoelectric actuators is widely used.To overcome positioning inaccuracy caused by hysteresis and creep of actuators,a precise tracking method for piezoelectric actuators using active disturbance rejection control(ADRC) has been proposed in this paper.This method,in real-time,actively estimates and compensates parameter uncertainties,nonlinear factors such as hysteresis,and external disturbances in the tracking system.Precise tracking of the piezoelectric actuator can be achieved without any form of feedforward compensations.The experimental results demonstrate that the active disturbance rejection controller can reduce tracking errors by over90%comparing with those using the PID controller.Those features of the proposed control method are very suitable for applications in adaptive optics.
文摘Piezoelectric actuators are distributed on both side of a rectangular wing model,and the possibility of improvement of aircraft rolling power is investigated. The difference between the model with aileron deflection and the model without aileron (fictitious control surface, FCS) is studied. The analytical results show that these two cases are substantial different. In aileron deflection case, the aeroelastic effect is disadvantageous, so the structural stiffness should be high until the electrical voltage is not necessary. But in the case of FCS,the aeroelastic effect is advantageous and it means that lower structural stiffness can lead to lower voltage. Compared with aileron project, the FCS project can save structure weight.
文摘A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM.
文摘The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.
文摘Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment proiects, including designing the wind tunnel model, checking the material constants, measuring the natural frequencies and checking the effects of actuators, guarantee the correctness and precision of the finite element model. The wind tunnel experiment results show that the calculations coincide with the experiments. The feasibility of fictitious control surface is validated.
文摘Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezo electric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.
文摘The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present.
基金supported by the National Natural Science Foundation of China(Grant No.62004166)Natural Science Foundation of Ningbo,China(Grant No.202003N4062)+3 种基金Natural Science Foundation of Zhejiang Province,China(Grant No.LY23F040002)National Postdoctoral Program for Innovative Talents,China(Grant No.BX20200279)Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2020JQ-199)Fundamental Research Funds for the Central Universities,China(Grant No.31020190QD027).
文摘Piezoelectric actuators are a class of actuators that precisely transfer input electric energy into displacement,force,or movement outputs efficiently via inverse piezoelectric effect-based electromechanical coupling.Various types of piezoelectric actuators have sprung up and gained widespread use in various applications in terms of compelling attributes,such as high precision,flexibility of stoke,immunity to electromagnetic interference,and structural scalability.This paper systematically reviews the piezoelectric materials,operating principles,representative schemes,characteristics,and potential applications of each mainstream type of piezoelectric actuator.Herein,we intend to provide a more scientific and nuanced perspective to classify piezoelectric actuators into direct and indirect categories with several subcategories.In addition,this review outlines the pros and cons and the future development trends for all kinds of piezoelectric actuators by exploring the relations and mechanisms behind them.The rich content and detailed comparison can help build an in-depth and holistic understanding of piezoelectric actuators and pave the way for future research and the selection of practical applications.
基金supported by the National Natural Science Foundation of China [No.52075108,52105177]the Natural Science Foundation of Guangdong Province,China [No.2022A1515011875]the Young innovative talents project of general colleges and universities in Guangdong Province,China [No.2021KQNCX067].
文摘The ultra-precision field is popular for its micro-nanometer positioning accuracy and large working stroke.Piezoelectric actuators based on the stick-slip operational principle exhibit superior performance characteristics,making them stand out with unique advantages in this field.This paper provides a comprehensive review of the developments in stick-slip piezoelectric actuators over recent years.Starting with a detailed explanation of their operating principles,the article proceeds with a brief introduction to the more commonly used driving waveforms and their applications.Subsequently,various design and optimization technologies for existing com-pliant mechanisms are presented.Furthermore,stick-slip piezoelectric actuators are categorized based on different motion forms,including linear,rotary,and multi-degree of freedom types.Each category is thoroughly examined in terms of structural design and performance features.Following this,the discussion shifts toward controller method research and friction modeling analysis,featuring a particular emphasis on the advancements related to displacement back-lash suppression studies.This systematic summary aims to provide a reference for researchers within related fields,thereby facilitating the further development and application of stick-slip piezoelectric actuators.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
文摘Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.
基金The National Natural Science Foundation of China(No.10772086,10772085)
文摘The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51405293) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130073110037).
文摘In this paper, a novel rate-dependent Prandtl- Ishlinskii (P-I) model is proposed to characterize the rate- dependent hysteresis nonlinearity of piezoelectric actua- tors. The new model is based on a modified rate-dependent play operator, in which a dynamic envelope function is introduced to replace the input function of the classical play operator. Moreover, a dynamic density function is utilized in the proposed P-I model. The parameters of the proposed model are identified by a modified particle swarm optimization algorithm. Finally, experiments are conducted on a piezo-actuated nanopositioning stage to validate the proposed P-I model under the sinusoidal inputs. The experimental results show that the developed rate-dependent P-I model precisely characterize the rate- dependent hysteresis loops up to 1000 Hz.
文摘In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes to the static and dynamic response. In thepresent paper, an novel Enhanced Assumed Strain(EAS) piezoelectric solid element formulation isdeveloped for vibration active control of laminated structures bonded with piezoelectric sensors andactuators. Unlike the conventional brick elements, the present formulation is very reliable, moreaccurate, and computationally efficient and can be used to model the response of shell structuresbesides thin plates. Delaminations are modeled by pairs of nodes with the same coordinates butdifferent node numbers, and numerical results demonstrate the performance of the element and theglobal and local effects of debonding sensors/actuators on the dynamics of the adaptive laminates.
文摘This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.
基金This work was supported by the National Natural Science Foundation of China(Nos.12072084 and 11761131006)the Fundamental Research Funds for the Central Universities,the Ph.D.Student ResearchInnovation Fund of the Fundamental Research Funds for the Central Universities(No.3072020GIP0206).
文摘This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamilto's principle are applied to formulate the governing equation of structural system.The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling.The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method.With a specific control gain,the critical mechanical buckling load can remain constant at different temperatures.The effects of geometric parameters,fiber angle,stacking sequence,position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.
基金the National Natural Science Foundation of China(Grant No.52105255)the National Key R&D Program of China(Grant No.2020YFB1708300)the Tencent Foundation or XPLORER PRIZE,the Knowledge Innovation Program of Wuhan-Shuguang,and the Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education NJ2020003(Grant No.INMD-2021M02).
文摘Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezoelectric actuators always suffers from the emergence of several localized hinges with only one-node connection, which have difficulty satisfying manufacturing and machining requirements (from the over- or under-etching devices). The main purpose of the current paper is to propose a robust isogeometric topology optimization (RITO) method for the design of piezoelectric actuators, which can effectively remove the critical issue induced by one-node connected hinges and simultaneously maintain uniform manufacturability in the optimized topologies. In RITO, the isogeometric analysis replacing the conventional finite element method is applied to compute the unknown electro elastic fields in piezoelectric materials, which can improve numerical accuracy and then enhance iterative stability. The erode–dilate operator is introduced in topology representation to construct the eroded, intermediate, and dilated density distribution functions by non-uniform rational B-splines. Finally, the RITO formulation for the design of piezoelectric materials is developed, and several numerical examples are performed to test the effectiveness and efficiency of the proposed RITO method.
基金Project (No. 2004035223) supported by the Postdoctoral ScienceFoundation of China
文摘This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.
基金financial support of the National Natural Science Foundation of China (Grant11090331)Support from the Chinese National Programs for Scientific Instruments Research and Development (Grant 2012YQ03007502)
文摘Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and unimorph(or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator–based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator–based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator–based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator–based sensor is more suitable for hard materials.