The transient response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric impacting loads is investigated in the present paper. Laplace and Fourier transforms are used to...The transient response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric impacting loads is investigated in the present paper. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain, which are solved numerically. The dynamic stress and electric displacement factors are obtained as the functions of time and geometry parameters. The present study shows that the presence of the dynamic electric field will impede or enhance the propagation of the crack in piezoelectric ceramics at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the space of the cracks and the crack length.展开更多
in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2...in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2O3 has been prepared by conventional technique with sintering temperature from 1100 degreesC to 1140 degreesC. X-ray diffraction patterns demonstrated that pure perovskite phase was obtained. Secondary electron image (SEI) showed that crystalline grains in ceramics were well grown. d(33) of manufactured sample was as high as 560 x 10(-12)C/N. k(p) was about 0.61 and tg delta about 30 x 10(-3). The existence of liquid phase examined by electron diffraction in PZN-PZT sample is beneficial to sintering of the ceramic.展开更多
The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)tr...The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.展开更多
The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abb...The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abbreviated as PMS) on phase structure, microstructure, piezoelectric and dielectric properties of PMS-PZT ceramics was investigated. The results show that the pure perovskite phase is in all ceramics specimens, the phase structure of PMS-PZT ceramics changes from tetragonal phase to single rhombohedral phase with the increasing amount of PMS. The dielectric constant εr, Curie temperature TC, electromechanical coupling factor kp and piezoelectric constant d33 decrease, whereas the mechanical quality factor Qm and dielectric loss tanδ increase with the increasing amount of PMS in system. The optimum sintering temperature is 1 200?1 250 ℃. It is concluded that the PMS-PZT (x=0.07) ceramics sintered at 1 250 ℃ is suitable for high-power piezoelectric transformer. These properties include εr= 674.8, tanδ=0.005 25, kp=0.658, Qm=1 520, d33=230 pC/N, Tc=275 ℃.展开更多
Piezoelectric atomizers exhibit the advantages of structural simplicity,portability,low energy consumption,low production costs,and good atomization.They have been extensively used in various fields,including inhalati...Piezoelectric atomizers exhibit the advantages of structural simplicity,portability,low energy consumption,low production costs,and good atomization.They have been extensively used in various fields,including inhalation therapy,inkjet printing,and spray cooling.Here,the research of piezoelectric atomizers is first summarized from the perspectives of theoretical investigation and applications.Subsequently,the existing investigation and applications on piezoelectric atomizers are classified in terms of their functionalities.The functions of inkjet printing,spray cooling,and inhalation therapy are described in detail.Finally,the future trends in this field are analyzed.It is indicated that the vibrating-mesh atomizer has a promising prospect in the market,signaling strong demand especially in upgaraded consumption and medical scenarios.展开更多
The piezoelectric ceramic transformer has been more and more widely applied in elec tronic devices of high voltage and small current due to its novel features in the high voltage field: very high voltage step-up ratio...The piezoelectric ceramic transformer has been more and more widely applied in elec tronic devices of high voltage and small current due to its novel features in the high voltage field: very high voltage step-up ratio, small in size, light in weight and non-metal material in use; it cannot be burnt while the load circuit is shorted, and broken down in high voltage field;展开更多
Main aim of the presented paper is the theoretical analysis and experimental verification of the transformation parameters for the new type of nonhomogeneously poled ring transformer.The input part is poled in the thi...Main aim of the presented paper is the theoretical analysis and experimental verification of the transformation parameters for the new type of nonhomogeneously poled ring transformer.The input part is poled in the thickness direction and output part in the radial direction.Two transformer geometries are studied—the input part is at inner ring segment,or it is at the outer ring segment.The optimum electrode size aspect ratios have been found experimentally as d_(1)=D≈0:60-0:65 for the ring with aspect ratio d=D¼0:2.The fundamental as well as higher overtone resonances were studied for the transformation ratio,the optimum resistive load,efficiency and no-load transformation ratio.Higher overtones have better transformation parameters compared to the fun-damental resonance.The new type ring transformer exhibits very high transformation ratios up to 200 under no-load and up to 13.4 under a high efficiency of 97%at the optimum load conditions of 10kΩ.Strong electric field gradient at the output circuit is applicable for the electrical discharge generation.展开更多
This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mo...This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.展开更多
Based on the general solution of three-dimensional problems inpiezoelectric medium, with the method of Green's functins~[2],axisymmetric boundary-value problems are discussed. The purpose ofthis research is for an...Based on the general solution of three-dimensional problems inpiezoelectric medium, with the method of Green's functins~[2],axisymmetric boundary-value problems are discussed. The purpose ofthis research is for analyzing the effective on mechanics andelectricity of the piezoelectric ceramics caused by voids andinclusions. The displacement, traction and electric Green's functionscorresponding to circular ring loads acting in the interior of apiezoelectric ceramic are obtained. A cylindrical coordinate systemis employed and Hankel transform are applied with respect to radialcoor- dinates. Explicit solutions for Green's functions are presentedin terms of infinite integrals of Lipshitz- Hankel type. By solving atraction boundary-value problem, the solution scheme is illustrate.展开更多
文摘The transient response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric impacting loads is investigated in the present paper. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain, which are solved numerically. The dynamic stress and electric displacement factors are obtained as the functions of time and geometry parameters. The present study shows that the presence of the dynamic electric field will impede or enhance the propagation of the crack in piezoelectric ceramics at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the space of the cracks and the crack length.
文摘in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2O3 has been prepared by conventional technique with sintering temperature from 1100 degreesC to 1140 degreesC. X-ray diffraction patterns demonstrated that pure perovskite phase was obtained. Secondary electron image (SEI) showed that crystalline grains in ceramics were well grown. d(33) of manufactured sample was as high as 560 x 10(-12)C/N. k(p) was about 0.61 and tg delta about 30 x 10(-3). The existence of liquid phase examined by electron diffraction in PZN-PZT sample is beneficial to sintering of the ceramic.
基金supported in part by the National Natural Science Foundation of China(No.11672142)the Technology Innovation 2025 Program of the Municipality of Ningbo(No.2019B10122)。
文摘The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.
基金Project (10474077) supported by the National Natural Science Foundation of China
文摘The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abbreviated as PMS) on phase structure, microstructure, piezoelectric and dielectric properties of PMS-PZT ceramics was investigated. The results show that the pure perovskite phase is in all ceramics specimens, the phase structure of PMS-PZT ceramics changes from tetragonal phase to single rhombohedral phase with the increasing amount of PMS. The dielectric constant εr, Curie temperature TC, electromechanical coupling factor kp and piezoelectric constant d33 decrease, whereas the mechanical quality factor Qm and dielectric loss tanδ increase with the increasing amount of PMS in system. The optimum sintering temperature is 1 200?1 250 ℃. It is concluded that the PMS-PZT (x=0.07) ceramics sintered at 1 250 ℃ is suitable for high-power piezoelectric transformer. These properties include εr= 674.8, tanδ=0.005 25, kp=0.658, Qm=1 520, d33=230 pC/N, Tc=275 ℃.
基金This work was supported by the National Natural Science Foundation of China(No.51375227)。
文摘Piezoelectric atomizers exhibit the advantages of structural simplicity,portability,low energy consumption,low production costs,and good atomization.They have been extensively used in various fields,including inhalation therapy,inkjet printing,and spray cooling.Here,the research of piezoelectric atomizers is first summarized from the perspectives of theoretical investigation and applications.Subsequently,the existing investigation and applications on piezoelectric atomizers are classified in terms of their functionalities.The functions of inkjet printing,spray cooling,and inhalation therapy are described in detail.Finally,the future trends in this field are analyzed.It is indicated that the vibrating-mesh atomizer has a promising prospect in the market,signaling strong demand especially in upgaraded consumption and medical scenarios.
文摘The piezoelectric ceramic transformer has been more and more widely applied in elec tronic devices of high voltage and small current due to its novel features in the high voltage field: very high voltage step-up ratio, small in size, light in weight and non-metal material in use; it cannot be burnt while the load circuit is shorted, and broken down in high voltage field;
基金This work was supported by the Czech Ministry of Education under the project LO1213.
文摘Main aim of the presented paper is the theoretical analysis and experimental verification of the transformation parameters for the new type of nonhomogeneously poled ring transformer.The input part is poled in the thickness direction and output part in the radial direction.Two transformer geometries are studied—the input part is at inner ring segment,or it is at the outer ring segment.The optimum electrode size aspect ratios have been found experimentally as d_(1)=D≈0:60-0:65 for the ring with aspect ratio d=D¼0:2.The fundamental as well as higher overtone resonances were studied for the transformation ratio,the optimum resistive load,efficiency and no-load transformation ratio.Higher overtones have better transformation parameters compared to the fun-damental resonance.The new type ring transformer exhibits very high transformation ratios up to 200 under no-load and up to 13.4 under a high efficiency of 97%at the optimum load conditions of 10kΩ.Strong electric field gradient at the output circuit is applicable for the electrical discharge generation.
文摘This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.
基金the National Natural Science Foundation of Chinathe Foundation of the Open Laboratory of Solid Mechanics
文摘Based on the general solution of three-dimensional problems inpiezoelectric medium, with the method of Green's functins~[2],axisymmetric boundary-value problems are discussed. The purpose ofthis research is for analyzing the effective on mechanics andelectricity of the piezoelectric ceramics caused by voids andinclusions. The displacement, traction and electric Green's functionscorresponding to circular ring loads acting in the interior of apiezoelectric ceramic are obtained. A cylindrical coordinate systemis employed and Hankel transform are applied with respect to radialcoor- dinates. Explicit solutions for Green's functions are presentedin terms of infinite integrals of Lipshitz- Hankel type. By solving atraction boundary-value problem, the solution scheme is illustrate.