This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is propos...Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is proposed. In the process of online task planning in dynamic complex environment,online task planning is based on event triggering including target information update event, new target addition event, target failure event, weapon failure event, etc., and the methods include defense area reanalysis, parameter space update, and mission re-planning. Simulation is conducted for different events and the result shows that the index value of the attack scenario after re-planning is better than that before re-planning and according to the probability distribution of statistical simulation method, the index value distribution after re-planning is obviously in the region of high index value, and the index value gap before and after re-planning is related to the degree of posture change.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backs...In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method.展开更多
The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model unce...The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model uncertain, is much more complex than conventional nero-fin control. A novel nonlinear backstepping control approach is proposed to design the blended autopilot. Missile model is reformed to a new one by state reconstruction technique so that it is easy to be handled by the backstepping method. Then a Lyapunov function is chosen to avoid oscillation caused in normal backstepping way when control parameters are mismatched. In distribution of both inputs, optimal energy logic is proposed. In addition, a fuzzy cerebellar model articulation controller (FCMAC) neural network is used to guarantee controller robustness to uncertainties. Finally, simulation results demonstrate the efficiency and advantages of the proposed method.展开更多
To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental r...To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.展开更多
The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard m...The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard missile with free-spinning tails, and was tested to obtain the relations between rolling moment coefficient, Mach number, and angle of attack. All the computed rolling moment coefficients obtained from the proposed method greatly agreed with the experimental results of FD-06 wind tunnel in CAAA, which proved that the method can not only reduce the calculation cost but also keep precision in calculating the rolling characteristics of canard missiles.展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exp...Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exploratory evaluation(UEEE),is proposed to guide the evaluation activities,which can iteratively and gradually reduce uncertainty in evaluation results.Uncertainty entropy(UE)is proposed to measure the extent of uncertainty.First,the belief degree distributions are assumed to characterize the uncertainty in attributes.Then the belief degree distribution of the evaluation result can be calculated by using uncertainty theory.The obtained result is then checked based on UE to see if it could meet the requirements of decision-making.If its uncertainty level is high,more information needs to be introduced to reduce uncertainty.An algorithm based on the UE is proposed to find which attribute can mostly affect the uncertainty in results.Thus,efforts can be invested in key attribute(s),and the evaluation results can be updated accordingly.This update should be repeated until the evaluation result meets the requirements.Finally,as a case study,the effectiveness of ballistic missiles with uncertain attributes is evaluated by UEEE.The evaluation results show that the target is believed to be destroyed.展开更多
Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missi...Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
文摘Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is proposed. In the process of online task planning in dynamic complex environment,online task planning is based on event triggering including target information update event, new target addition event, target failure event, weapon failure event, etc., and the methods include defense area reanalysis, parameter space update, and mission re-planning. Simulation is conducted for different events and the result shows that the index value of the attack scenario after re-planning is better than that before re-planning and according to the probability distribution of statistical simulation method, the index value distribution after re-planning is obviously in the region of high index value, and the index value gap before and after re-planning is related to the degree of posture change.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method.
基金the China Aviation Science Foundation (03D12004)
文摘The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model uncertain, is much more complex than conventional nero-fin control. A novel nonlinear backstepping control approach is proposed to design the blended autopilot. Missile model is reformed to a new one by state reconstruction technique so that it is easy to be handled by the backstepping method. Then a Lyapunov function is chosen to avoid oscillation caused in normal backstepping way when control parameters are mismatched. In distribution of both inputs, optimal energy logic is proposed. In addition, a fuzzy cerebellar model articulation controller (FCMAC) neural network is used to guarantee controller robustness to uncertainties. Finally, simulation results demonstrate the efficiency and advantages of the proposed method.
文摘To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HEUCFG201815)
文摘The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard missile with free-spinning tails, and was tested to obtain the relations between rolling moment coefficient, Mach number, and angle of attack. All the computed rolling moment coefficients obtained from the proposed method greatly agreed with the experimental results of FD-06 wind tunnel in CAAA, which proved that the method can not only reduce the calculation cost but also keep precision in calculating the rolling characteristics of canard missiles.
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
基金the National Natural Science Foundation of China(61872378).
文摘Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exploratory evaluation(UEEE),is proposed to guide the evaluation activities,which can iteratively and gradually reduce uncertainty in evaluation results.Uncertainty entropy(UE)is proposed to measure the extent of uncertainty.First,the belief degree distributions are assumed to characterize the uncertainty in attributes.Then the belief degree distribution of the evaluation result can be calculated by using uncertainty theory.The obtained result is then checked based on UE to see if it could meet the requirements of decision-making.If its uncertainty level is high,more information needs to be introduced to reduce uncertainty.An algorithm based on the UE is proposed to find which attribute can mostly affect the uncertainty in results.Thus,efforts can be invested in key attribute(s),and the evaluation results can be updated accordingly.This update should be repeated until the evaluation result meets the requirements.Finally,as a case study,the effectiveness of ballistic missiles with uncertain attributes is evaluated by UEEE.The evaluation results show that the target is believed to be destroyed.
基金supported by Joint Fund of the Ministry of Education f or Equipment Pre-research (6141A20223)。
文摘Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.