Pin fins are widely used in applications where effective heat transfer is crucial.Their compact design,high surface area,and efficient heat transfer characteristics make them a practical choice for many thermal manage...Pin fins are widely used in applications where effective heat transfer is crucial.Their compact design,high surface area,and efficient heat transfer characteristics make them a practical choice for many thermal management applications.But for a high heat transfer rate and lightweight application,aerofoil shape pin fins are a good option.This work focuses on an experimental model analysis of pin-fins with aerofoil shapes.The results were evaluated between perforation,no perforation,inline,and staggered fin configurations.Aluminum is used to make the pin fins array.The experiment is carried out inside a wind tunnel,and the heat supply varies between 500 to 3000 W.An electric heater,fan,anemometer,thermocouple,pressure transmitter,data logger,and computer system were used for this experiment.The friction factor,thermal efficiency,performance efficacy,and pressure drop of a pin fin aerofoil shape have been assessed.A comparison study was carried out with and without perforations and inline and staggered arrangements.In terms of overall efficacy,different aerofoil shape pin fin arrays achieve values varying between 1.8 and 14.7.The acquired data demonstrate that perforated staggered configurations perform 10%better than inline.Furthermore,the pressure drop is reduced by 50%in staggered setups.The empirical correlation of Dittus-Bolter and Blasius correlations was used to validate the experimental heat dissipation enhancement factor requirements of Nusselt number and friction factor.The validation of the experiment using correlation has been completed satisfactorily.Hence,experimental results prove that aerofoil pin-fin arrays can be used successfully for applications like the electronics industry,heat exchangers and gas turbine blade cooling.展开更多
Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing...Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing to air-cooling applications. Empirical equations to predict heat transfer on the endwall were developed by obtaining experimental data on the copper base plate with acrylic pins. A new model for predicting pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow based on mass, momentum, and energy conservation within the two control volumes is proposed. The first control volume in the model is located within the finned area, and the second is located in the gap between the tip of the pins and the flow channel. This model combines two conditions according to the boundary-layer thickness. A comparison between experimental and calculated results revealed that dimensionless pressure drops and the Nusselt number could be predicted within 30% error for the former and 50% error for the latter.展开更多
In order to comply with the recent demand for downsizing of the electric equipment, the minia- turization and the improvement in heat transfer performance of a heat sink under natural air-cooling are increasingly requ...In order to comply with the recent demand for downsizing of the electric equipment, the minia- turization and the improvement in heat transfer performance of a heat sink under natural air-cooling are increasingly required. This paper describes the experimental and numerical investigations of heat sinks with miniature/micro pins and the effect of the pin size, pin height and the number of pins on heat transfer characteristics of heat sinks. Five types of basic heat sink models are investigated in this study. The whole heat transfer area of heat sinks having the different pin size, pin height and the number of pins respectively is kept constant. From a series of experiments and numerical analyses, it has been clarified that the heat sink temperature rises with increase in the number of pins. That is, the heat sink with miniaturized fine pins showed almost no effect on the heat transfer enhancement. This is because of the choking phenomenon occurred in the air space among the pin fins. Reflecting these results, it is confirmed that the heat transfer coefficient reduces with miniaturization of pins. Concerning the effects of the heat transfer area on the heat sink performance, almost the same tendency has been observed in other three series of large surface area, that is, higher pin height. Furthermore as a result of studying non-dimensional convection heat transfer performance, it was found that the relation between the Nusselt number (Nu) and the Rayleight number (Ra) is given by Nu = 0.16 Ra0.52.展开更多
Micro-pin-fin cooler mounted on the power chip enables the heat removal to meet modern microsystem requirement. Carbon nanotubes (CNTs) have been proven as a potential material for micro-coolers due to the superior ...Micro-pin-fin cooler mounted on the power chip enables the heat removal to meet modern microsystem requirement. Carbon nanotubes (CNTs) have been proven as a potential material for micro-coolers due to the superior thermal conductivity, good mechanical property and so forth, and there appear various applications of CNTs in the micro-cooler technology. In the present paper, an analysis of the thermal and hydraulic characteristics of the micro-pin-fin heat sink was conducted, where air was used as the cooling medium and an impinging jet was introduced to enhance the heat transfer. Three-dimension computational fluid dynamics (CFD) simulations were carried out for micro-pin-fin coolers with various parameters, including the pin-fin size and pattern as well as the jet velocity and nozzle diameter. The flow field and thermal properties of the. micro-pin-fin heat sink were obtained, and the heat removal efficiency was evaluated.展开更多
To enhance the thermo-hydraulic performance of cooling channels,this investigation examines the influence of distinct cross-sectional shapes(i.e.,triangular,rectangular,and hexagonal)of twisted pin fins and their arra...To enhance the thermo-hydraulic performance of cooling channels,this investigation examines the influence of distinct cross-sectional shapes(i.e.,triangular,rectangular,and hexagonal)of twisted pin fins and their arrangements in straight and cross rows.An ambient air cooling test platform was established to numerically and experimentally investigate the flow and heat transfer characteristics of 360°twisted pin fins at Re=15200-22800.The findings reveal that straight rows exhibit higher Nu values than cross rows for triangular and rectangular twisted pin fins,and Nu increases with Re.In contrast,for hexagonal twisted pin fins,only straight rows at Re=19000 exhibit superior overall thermal performance compared to cross rows.Notably,the heat transfer performance of the cooling channel with hexagonal twisted fins surpasses both triangular and rectangular configurations,especially at high Reynolds numbers(Re=22800).Although the heat transfer coefficient of the cooling channel with hexagonal twisted fins is significantly enhanced by 132.71%compared to the flat channel,it also exhibits the highest thermal resistance and relative friction among the three types of twisted fins,the maximum of which are 2.14 and 16.55.Furthermore,the hydrothermal performance factor(HTPF)of the cooling channels with different types of twisted pin fins depends on the Reynolds number and arrangement modes.At Re=15200,the highest HTPF achieved for the cross-row hexagonal twisted pin fins is 0.99.展开更多
Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of ...Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of this new kind of heat sink. In this study,the finite element method (FEM) was used to predict the heat transferring performance of fabric heat sink under the condition of natural convection and forced convection, and its heat transferring performance was compared with that of pin fin heat sink. The results showed that in the condition of natural convection the heat transferring performance of pin fin heat sink was better than that of fabric heat sink, and vice versa under the forced convection condition.展开更多
Considering current technology limitation in manufacturing present pin fin heat sinks, a new fabric heat sink has been previously designed. However, there is a lack of an understanding of the heat transferring perform...Considering current technology limitation in manufacturing present pin fin heat sinks, a new fabric heat sink has been previously designed. However, there is a lack of an understanding of the heat transferring performance of this new kind of heat sink. Nowadays, finite element analysis has been generally developed for determining heat transfer from in-line and staggered pin fin heat sinks used in electronic packaging applications. In this study, this method is used to predict the heat transfer performance of the new heat sink with woven fabric structure, called fabric pin fin heat sink. Effect of the fin length and the material types made of heat sink on the thermal-structure response of the pin fin was investigated under forced convection. The results show that the minimum temperature of heat sink decreases with an increase of pin fin length,but the decreasing amplitude has decreased. Moreover, the heat transfer performance of fabric heat sink made of continuous carbon Fibers/Polymer (PPS) is worse than that of copper and of aluminum.展开更多
Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was select...Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was selected as the object to be studied. The irreversibility due to heat transfer and friction was taken into account so that the minimum entropy generation number has been analyzed with respect to second law of thermodynamics in the forced cross-flow. The optimum dimensions of cylinder pins were discussed. It's found that the minimum entropy generation number depends on parameters related to the fluid and fin physical parameters. Varlatioms of the minimum entropy generation number with different parameters were analyzed.展开更多
文摘Pin fins are widely used in applications where effective heat transfer is crucial.Their compact design,high surface area,and efficient heat transfer characteristics make them a practical choice for many thermal management applications.But for a high heat transfer rate and lightweight application,aerofoil shape pin fins are a good option.This work focuses on an experimental model analysis of pin-fins with aerofoil shapes.The results were evaluated between perforation,no perforation,inline,and staggered fin configurations.Aluminum is used to make the pin fins array.The experiment is carried out inside a wind tunnel,and the heat supply varies between 500 to 3000 W.An electric heater,fan,anemometer,thermocouple,pressure transmitter,data logger,and computer system were used for this experiment.The friction factor,thermal efficiency,performance efficacy,and pressure drop of a pin fin aerofoil shape have been assessed.A comparison study was carried out with and without perforations and inline and staggered arrangements.In terms of overall efficacy,different aerofoil shape pin fin arrays achieve values varying between 1.8 and 14.7.The acquired data demonstrate that perforated staggered configurations perform 10%better than inline.Furthermore,the pressure drop is reduced by 50%in staggered setups.The empirical correlation of Dittus-Bolter and Blasius correlations was used to validate the experimental heat dissipation enhancement factor requirements of Nusselt number and friction factor.The validation of the experiment using correlation has been completed satisfactorily.Hence,experimental results prove that aerofoil pin-fin arrays can be used successfully for applications like the electronics industry,heat exchangers and gas turbine blade cooling.
文摘Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing to air-cooling applications. Empirical equations to predict heat transfer on the endwall were developed by obtaining experimental data on the copper base plate with acrylic pins. A new model for predicting pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow based on mass, momentum, and energy conservation within the two control volumes is proposed. The first control volume in the model is located within the finned area, and the second is located in the gap between the tip of the pins and the flow channel. This model combines two conditions according to the boundary-layer thickness. A comparison between experimental and calculated results revealed that dimensionless pressure drops and the Nusselt number could be predicted within 30% error for the former and 50% error for the latter.
文摘In order to comply with the recent demand for downsizing of the electric equipment, the minia- turization and the improvement in heat transfer performance of a heat sink under natural air-cooling are increasingly required. This paper describes the experimental and numerical investigations of heat sinks with miniature/micro pins and the effect of the pin size, pin height and the number of pins on heat transfer characteristics of heat sinks. Five types of basic heat sink models are investigated in this study. The whole heat transfer area of heat sinks having the different pin size, pin height and the number of pins respectively is kept constant. From a series of experiments and numerical analyses, it has been clarified that the heat sink temperature rises with increase in the number of pins. That is, the heat sink with miniaturized fine pins showed almost no effect on the heat transfer enhancement. This is because of the choking phenomenon occurred in the air space among the pin fins. Reflecting these results, it is confirmed that the heat transfer coefficient reduces with miniaturization of pins. Concerning the effects of the heat transfer area on the heat sink performance, almost the same tendency has been observed in other three series of large surface area, that is, higher pin height. Furthermore as a result of studying non-dimensional convection heat transfer performance, it was found that the relation between the Nusselt number (Nu) and the Rayleight number (Ra) is given by Nu = 0.16 Ra0.52.
基金supported by the National Natural Science Foundation of China(Grant No.10702037)the National High-Technology Research and Development Program(Grant No.2008AA04Z301)
文摘Micro-pin-fin cooler mounted on the power chip enables the heat removal to meet modern microsystem requirement. Carbon nanotubes (CNTs) have been proven as a potential material for micro-coolers due to the superior thermal conductivity, good mechanical property and so forth, and there appear various applications of CNTs in the micro-cooler technology. In the present paper, an analysis of the thermal and hydraulic characteristics of the micro-pin-fin heat sink was conducted, where air was used as the cooling medium and an impinging jet was introduced to enhance the heat transfer. Three-dimension computational fluid dynamics (CFD) simulations were carried out for micro-pin-fin coolers with various parameters, including the pin-fin size and pattern as well as the jet velocity and nozzle diameter. The flow field and thermal properties of the. micro-pin-fin heat sink were obtained, and the heat removal efficiency was evaluated.
基金sponsored by the China Postdoctoral Science Foundation(2023M732569)the Fundamental Research Program of Shanxi Province,China(202203021212263)+3 种基金Shanxi Scholarship Council of China(2023-055,2023-143)Chunhui Project Foundation of the Education Department of China(202200075)Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(2022L061)financially supported by the Shanxi Provincial Key Laboratory ofHigh Efficiency Heat Storage and Low Carbon Heat Supply,Taiyuan Boiler Group Co.,Ltd。
文摘To enhance the thermo-hydraulic performance of cooling channels,this investigation examines the influence of distinct cross-sectional shapes(i.e.,triangular,rectangular,and hexagonal)of twisted pin fins and their arrangements in straight and cross rows.An ambient air cooling test platform was established to numerically and experimentally investigate the flow and heat transfer characteristics of 360°twisted pin fins at Re=15200-22800.The findings reveal that straight rows exhibit higher Nu values than cross rows for triangular and rectangular twisted pin fins,and Nu increases with Re.In contrast,for hexagonal twisted pin fins,only straight rows at Re=19000 exhibit superior overall thermal performance compared to cross rows.Notably,the heat transfer performance of the cooling channel with hexagonal twisted fins surpasses both triangular and rectangular configurations,especially at high Reynolds numbers(Re=22800).Although the heat transfer coefficient of the cooling channel with hexagonal twisted fins is significantly enhanced by 132.71%compared to the flat channel,it also exhibits the highest thermal resistance and relative friction among the three types of twisted fins,the maximum of which are 2.14 and 16.55.Furthermore,the hydrothermal performance factor(HTPF)of the cooling channels with different types of twisted pin fins depends on the Reynolds number and arrangement modes.At Re=15200,the highest HTPF achieved for the cross-row hexagonal twisted pin fins is 0.99.
基金The Fundamental Research Funds for the Central Universities,China
文摘Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of this new kind of heat sink. In this study,the finite element method (FEM) was used to predict the heat transferring performance of fabric heat sink under the condition of natural convection and forced convection, and its heat transferring performance was compared with that of pin fin heat sink. The results showed that in the condition of natural convection the heat transferring performance of pin fin heat sink was better than that of fabric heat sink, and vice versa under the forced convection condition.
文摘Considering current technology limitation in manufacturing present pin fin heat sinks, a new fabric heat sink has been previously designed. However, there is a lack of an understanding of the heat transferring performance of this new kind of heat sink. Nowadays, finite element analysis has been generally developed for determining heat transfer from in-line and staggered pin fin heat sinks used in electronic packaging applications. In this study, this method is used to predict the heat transfer performance of the new heat sink with woven fabric structure, called fabric pin fin heat sink. Effect of the fin length and the material types made of heat sink on the thermal-structure response of the pin fin was investigated under forced convection. The results show that the minimum temperature of heat sink decreases with an increase of pin fin length,but the decreasing amplitude has decreased. Moreover, the heat transfer performance of fabric heat sink made of continuous carbon Fibers/Polymer (PPS) is worse than that of copper and of aluminum.
文摘Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was selected as the object to be studied. The irreversibility due to heat transfer and friction was taken into account so that the minimum entropy generation number has been analyzed with respect to second law of thermodynamics in the forced cross-flow. The optimum dimensions of cylinder pins were discussed. It's found that the minimum entropy generation number depends on parameters related to the fluid and fin physical parameters. Varlatioms of the minimum entropy generation number with different parameters were analyzed.