The spiral waves anchored to heterogeneous areas are more difficult to control and eliminate than freely rotating ones in homogenous mediums.To eliminate pinned spiral waves,the resistant force should be provided to r...The spiral waves anchored to heterogeneous areas are more difficult to control and eliminate than freely rotating ones in homogenous mediums.To eliminate pinned spiral waves,the resistant force should be provided to resist the pinning force.Other than advection field,we introduce parametric wave to play the role of providing resistant force.It is found that the parametric wave with large enough amplitude and proper frequency can unpin and eliminate the spiral wave successfully.The capability of parametric wave in providing resistant force is dependent on its amplitude and frequency sensitively.On the basis of parametric wave,the dependence of pinning force on the size and level of heterogeneity is further confirmed.展开更多
On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed f...On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed from the applicability of grain boundary equation. Also, a new expression describing the interaction range has been derived, which solves the problem in theory that the interaction range between SPP and GB can only be qualitatively analyzed previously. It is shown that given the interaction position between SPP and GB, the interaction range can be quantitatively determined by use of this expression.展开更多
The paper presents fabrication and characterization of spark plasma sintered textured(001) MgB_(2)with a record degree of orientation of about 40% and 16% by high-energy ultra-sonication and slip casting in high magne...The paper presents fabrication and characterization of spark plasma sintered textured(001) MgB_(2)with a record degree of orientation of about 40% and 16% by high-energy ultra-sonication and slip casting in high magnetic field(12 T) and 0 T magnetic field, respectively.Structural characterization was performed by X-ray diffraction, and electron microscopy. The analysis revealed unexpected preferred orientation also in the MgO secondary phase due to the epitaxial growth of(111) MgO on(001) MgB_(2). The influence of oriented microstructure on the superconducting characteristics expressed by critical current density(J_(c)), irreversibility field(H_(irr)), and on the pinning properties were assessed. High anisotropy versus sample orientation in applied magnetic field, H, was observed for J_(c), Hirr, pinning activation energy(U^(*))extracted from relaxation measurements. The zero-field critical current, J_(c0)and F_(p),maxare weakly or not dependent on the direction of H,while the other indicated parameters are significantly influenced. Results enable control of superconducting parameters by further optimization of microstructure through MgB_(2) texturing as a novel and viable strategy for development of bulk MgB2with enhanced properties when taking advantage of its anisotropy.展开更多
In this work,based on the classical grain boundary (GB) formula and the principle of work-energy conversion,a new physically-based model has been developed to predict the particle pinning force concerning the interact...In this work,based on the classical grain boundary (GB) formula and the principle of work-energy conversion,a new physically-based model has been developed to predict the particle pinning force concerning the interaction between second phase particles (SPPs) and the moving GB.The effect of particles pinning on the GB movement is analyzed.The modeling results can be applied to quantitatively determine the critical numbers of SPPs required for complete pining the grain growth,such as the critical SPPs number of the unit GB area,the critical number for single grain stagnation,the critical volume fraction of particles at a given particle size.Theoretical predictions are in good agreement with the experimental results by Gladman.展开更多
The research and development of high temperature superconducting (HTS) films, especially ReBa2Cu3- O7-δ (REBCO or RE123; RE=Y, Gd, or other rare earths) yttrium-based coated conductors, has generated widespread i...The research and development of high temperature superconducting (HTS) films, especially ReBa2Cu3- O7-δ (REBCO or RE123; RE=Y, Gd, or other rare earths) yttrium-based coated conductors, has generated widespread interest for the potential applications of the second generation superconducting films. In view of commercialization, however, the maximum superconducting currents for coated conductors should be increased further. Unfortunately, it has been frequently observed that the average critical current density Jc decreases with an increase in film thickness. The thickness effect is still a hurdle for largescale production, especially in pulsed laser deposition and metal organic deposition processes. An engineering current of more than 1 000 A/cm is desired owing to the high cost of 2G superconducting materials. The present work attempts to review the evolution of various issues subject to the thickness effect, including the microstructure, epitaxial texture, surface roughness, pinning force, oxygen deficiency, residual stress, copper-rich layers, and segregation of elements. Furthermore, recent progress in enhancing the performance of superconductors especially in terms of critical current density is illustrated, such as the use of heavy doping. Further understanding of the thickness effect is extremely important for large-scale commercial development of the second generation high temperature superconductors.展开更多
In this study we investigate the collective behavior of the generalized Kuramoto model with an ex- ternal pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarian...In this study we investigate the collective behavior of the generalized Kuramoto model with an ex- ternal pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscilla- tors follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrar- ians oscillating around π periodically. In addition, we present the parameter space of the oscillating state and traveling wave state of the model.展开更多
In this paper, the effect of magnetic nanoparticles on the mechanical properties of a type-II superconductor is investigated both theoretically and numerically. Magnetic part of the pinning force associated with the i...In this paper, the effect of magnetic nanoparticles on the mechanical properties of a type-II superconductor is investigated both theoretically and numerically. Magnetic part of the pinning force associated with the interaction between a finite-size spheroidal magnetic inclusion and an Abrikosov vortex is calculated in the London approximation. It is found that the size and shape of magnetic nanoparticles result in different enhancements of vortex pinning in large-k type-II superconductors. Meanwhile, the screening current induced by a magnetic spheroid suffer the action of Lorentz force, which will lead to prestress in the superconductor, so further numerical calculations are needed to explore the interaction between the spheroidal magnetic particle and superconductor. The distribution of displacement, stress and strain in the superconductor are finally obtained. It is shown that different sizes and shapes of nanoparticles also can change the distributions of these quantities.展开更多
基金the Fundamental Research Funds for the Central Universities of China(Grant No.2020ZDPYMS33(JT)).
文摘The spiral waves anchored to heterogeneous areas are more difficult to control and eliminate than freely rotating ones in homogenous mediums.To eliminate pinned spiral waves,the resistant force should be provided to resist the pinning force.Other than advection field,we introduce parametric wave to play the role of providing resistant force.It is found that the parametric wave with large enough amplitude and proper frequency can unpin and eliminate the spiral wave successfully.The capability of parametric wave in providing resistant force is dependent on its amplitude and frequency sensitively.On the basis of parametric wave,the dependence of pinning force on the size and level of heterogeneity is further confirmed.
基金the financial support from the Supporting Plan for New Century Excellent Talents,MOE,China under grant No.NCET-04-0257the National Natural Science Foundation of China(No.50471070)the Natural Science Foundation of Shanxi Province(No.20051050).
文摘On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed from the applicability of grain boundary equation. Also, a new expression describing the interaction range has been derived, which solves the problem in theory that the interaction range between SPP and GB can only be qualitatively analyzed previously. It is shown that given the interaction position between SPP and GB, the interaction range can be quantitatively determined by use of this expression.
基金financial support from MCI-UEFISCDI Romania, the projects PN030101 (21 N/2019), 5PTE/2020 – BIOTEHKER, and POC 37_697 no. 28/01.09.2016 REBMAT。
文摘The paper presents fabrication and characterization of spark plasma sintered textured(001) MgB_(2)with a record degree of orientation of about 40% and 16% by high-energy ultra-sonication and slip casting in high magnetic field(12 T) and 0 T magnetic field, respectively.Structural characterization was performed by X-ray diffraction, and electron microscopy. The analysis revealed unexpected preferred orientation also in the MgO secondary phase due to the epitaxial growth of(111) MgO on(001) MgB_(2). The influence of oriented microstructure on the superconducting characteristics expressed by critical current density(J_(c)), irreversibility field(H_(irr)), and on the pinning properties were assessed. High anisotropy versus sample orientation in applied magnetic field, H, was observed for J_(c), Hirr, pinning activation energy(U^(*))extracted from relaxation measurements. The zero-field critical current, J_(c0)and F_(p),maxare weakly or not dependent on the direction of H,while the other indicated parameters are significantly influenced. Results enable control of superconducting parameters by further optimization of microstructure through MgB_(2) texturing as a novel and viable strategy for development of bulk MgB2with enhanced properties when taking advantage of its anisotropy.
文摘In this work,based on the classical grain boundary (GB) formula and the principle of work-energy conversion,a new physically-based model has been developed to predict the particle pinning force concerning the interaction between second phase particles (SPPs) and the moving GB.The effect of particles pinning on the GB movement is analyzed.The modeling results can be applied to quantitatively determine the critical numbers of SPPs required for complete pining the grain growth,such as the critical SPPs number of the unit GB area,the critical number for single grain stagnation,the critical volume fraction of particles at a given particle size.Theoretical predictions are in good agreement with the experimental results by Gladman.
基金This work was supported in part by Shanghai Key Laboratory of High Temperature Superconductors (Grant No. 14DZ2260700), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 13111102300 and 14521102800), and the National Natural Science Foundation of China (Grant Nos. 51572165, 11174193 and 51202141).
文摘The research and development of high temperature superconducting (HTS) films, especially ReBa2Cu3- O7-δ (REBCO or RE123; RE=Y, Gd, or other rare earths) yttrium-based coated conductors, has generated widespread interest for the potential applications of the second generation superconducting films. In view of commercialization, however, the maximum superconducting currents for coated conductors should be increased further. Unfortunately, it has been frequently observed that the average critical current density Jc decreases with an increase in film thickness. The thickness effect is still a hurdle for largescale production, especially in pulsed laser deposition and metal organic deposition processes. An engineering current of more than 1 000 A/cm is desired owing to the high cost of 2G superconducting materials. The present work attempts to review the evolution of various issues subject to the thickness effect, including the microstructure, epitaxial texture, surface roughness, pinning force, oxygen deficiency, residual stress, copper-rich layers, and segregation of elements. Furthermore, recent progress in enhancing the performance of superconductors especially in terms of critical current density is illustrated, such as the use of heavy doping. Further understanding of the thickness effect is extremely important for large-scale commercial development of the second generation high temperature superconductors.
基金The work was supported by the National Natural Science Foundation of China (Grant Nos. 11447001, 11475004, and U1504108), the Key Project of Scientific and Technological Research of the Education Department of Henan Province (Grant Nos. 16A140002, 18A140012, and 18B140001), and the Innovation Foundation for Students of Anyang Normal University (Grant No. ASCX/2017-Z59).
文摘In this study we investigate the collective behavior of the generalized Kuramoto model with an ex- ternal pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscilla- tors follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrar- ians oscillating around π periodically. In addition, we present the parameter space of the oscillating state and traveling wave state of the model.
基金supported by the National Natural Science Foundation of China(Nos.11032006 and 11121202)
文摘In this paper, the effect of magnetic nanoparticles on the mechanical properties of a type-II superconductor is investigated both theoretically and numerically. Magnetic part of the pinning force associated with the interaction between a finite-size spheroidal magnetic inclusion and an Abrikosov vortex is calculated in the London approximation. It is found that the size and shape of magnetic nanoparticles result in different enhancements of vortex pinning in large-k type-II superconductors. Meanwhile, the screening current induced by a magnetic spheroid suffer the action of Lorentz force, which will lead to prestress in the superconductor, so further numerical calculations are needed to explore the interaction between the spheroidal magnetic particle and superconductor. The distribution of displacement, stress and strain in the superconductor are finally obtained. It is shown that different sizes and shapes of nanoparticles also can change the distributions of these quantities.