Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed...Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.展开更多
A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal def...A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal deformations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put forward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabilized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics parameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the construction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3Dand deformation monitoring.展开更多
为提高相变屋面的性能,本文提出了一种冷却塔-内嵌管式相变屋面复合降温系统。基于焓法,建立了系统的数值计算传热模型,数值研究了该系统在福州地区的热性能及节能潜力,探讨了相变材料相变温度、相变材料导热系数以及内嵌管间距的影响,...为提高相变屋面的性能,本文提出了一种冷却塔-内嵌管式相变屋面复合降温系统。基于焓法,建立了系统的数值计算传热模型,数值研究了该系统在福州地区的热性能及节能潜力,探讨了相变材料相变温度、相变材料导热系数以及内嵌管间距的影响,并与传统的无内嵌管相变屋面进行了对比分析。研究发现,相变温度越高,复合降温系统的相变材料越容易完成凝固,但潜热利用率随相变温度的升高呈现先增加后降低的趋势。当相变温度由35℃升高到41℃时,屋面的累计冷负荷由383 k J/m^(2)增大到400 k J/m^(2),增加了4.4%。相变材料导热系数越高、内嵌管间距越小,复合降温系统相比于传统无内嵌管相变屋面的潜热利用优势越显著。当导热系数由0.2 W/(m·K)增加到0.8 W/(m·K)时,复合降温系统的潜热利用率和屋面累计冷负荷分别增加了36.3%和5.1%,而无内嵌管相变屋面的潜热利用率和屋面累计冷负荷分别升高了33.1%和6.3%。当内嵌管间距由500 mm减少到100 mm时,复合降温系统比传统无内嵌管相变屋面的潜热利用提高率由2.7%增大到16.3%,累计冷负荷降低率由3.8%升高到10.9%。研究结果可促进建筑节能和双碳目标的实现。展开更多
Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. Wi...Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. With the example of a certain tunnel excavation,the comparison of the values of longitudinal strain of reinforcing pipe between field monitoring and analytical approach was made. The results indicate that Pasternak model,which considers a more realistic hypothesis in the elastic soil than Winkler model,gives more accurate calculation and agrees better with the result of field monitoring. The difference of calculation results between these two models is about 7%,and Pasternak model is proved to be a better way to study the reinforcement mechanism and improve design practice. The calculation results also reveal that the reinforcing pipes act as levers,which increases longitudinal load transfer to an unexcavated area,and consequently decreases deformation and increases face stability.展开更多
Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and...Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and facilities is vital in this kind of work. Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of underground pipelines of sewage systems. This method utilizes mud slurry that is formed around the pipes in order to stabilize the surrounding soil. In the pipe roof method the tubing elements that are constructed by slurry pipe jacking are near each other longitudinally, and create a rigid and stable lining before the excavation of the main tunnel. This paper discusses 'the application of a slurry pipe jacking system on 'the pipe roof method by means of numerical analysis. Because of the rigid behavior of the lining, the results show little subsidence, making this method a reliable method of constructing large tunnels with small cover in an urban area.展开更多
Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate comp...Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.展开更多
Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempte...Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempted to achieve this simulation.A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction.Accordingly,the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development ofDynaflowscripts,which is the key issue of variable boundary conditionmethod implementation.In this paper,Gongbei tunnel based on hybrid regional model involvingmulti-field coupling is simulated.Meanwhile,the variable boundary condition method for regional model is verified against model initialization and the ground deformation due to tunnel excavation is predicted via the proposed hybrid regional model.Compared with the monitoring data of actual engineering,the results indicated that the hybrid regional model has a good prediction effect.展开更多
The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel,especially under good ground conditions.However,the pipe roofing met...The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel,especially under good ground conditions.However,the pipe roofing method has rarely been applied in soft ground,where the prediction and control of the ground settlement play important roles.This study proposes a sliced-soil-beam(SSB)model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground.The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics.As part of this work,the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground.The pipe roofing system was simplified to a threedimensional Winkler beam to consider the interaction between the soil and pipe roofing.The model was verified in a case study conducted in Shanghai,China,in which it provided the efficient and accurate prediction of settlement.Finally,the parameters affecting the ground settlement were analyzed.It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.展开更多
基金supported by the financial support from National Natural Science Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+4 种基金The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education(No.2020P04)the support above is gratefully acknowledged.
文摘Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.
基金Major Science and Technology R&D Program of Ministry of Railways(No.2005K001-D(G)-2)
文摘A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal deformations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put forward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabilized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics parameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the construction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3Dand deformation monitoring.
文摘为提高相变屋面的性能,本文提出了一种冷却塔-内嵌管式相变屋面复合降温系统。基于焓法,建立了系统的数值计算传热模型,数值研究了该系统在福州地区的热性能及节能潜力,探讨了相变材料相变温度、相变材料导热系数以及内嵌管间距的影响,并与传统的无内嵌管相变屋面进行了对比分析。研究发现,相变温度越高,复合降温系统的相变材料越容易完成凝固,但潜热利用率随相变温度的升高呈现先增加后降低的趋势。当相变温度由35℃升高到41℃时,屋面的累计冷负荷由383 k J/m^(2)增大到400 k J/m^(2),增加了4.4%。相变材料导热系数越高、内嵌管间距越小,复合降温系统相比于传统无内嵌管相变屋面的潜热利用优势越显著。当导热系数由0.2 W/(m·K)增加到0.8 W/(m·K)时,复合降温系统的潜热利用率和屋面累计冷负荷分别增加了36.3%和5.1%,而无内嵌管相变屋面的潜热利用率和屋面累计冷负荷分别升高了33.1%和6.3%。当内嵌管间距由500 mm减少到100 mm时,复合降温系统比传统无内嵌管相变屋面的潜热利用提高率由2.7%增大到16.3%,累计冷负荷降低率由3.8%升高到10.9%。研究结果可促进建筑节能和双碳目标的实现。
基金Project(IRT0518) supported by the Program of Innovative Research Team of Ministry of Education of China
文摘Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. With the example of a certain tunnel excavation,the comparison of the values of longitudinal strain of reinforcing pipe between field monitoring and analytical approach was made. The results indicate that Pasternak model,which considers a more realistic hypothesis in the elastic soil than Winkler model,gives more accurate calculation and agrees better with the result of field monitoring. The difference of calculation results between these two models is about 7%,and Pasternak model is proved to be a better way to study the reinforcement mechanism and improve design practice. The calculation results also reveal that the reinforcing pipes act as levers,which increases longitudinal load transfer to an unexcavated area,and consequently decreases deformation and increases face stability.
文摘Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and facilities is vital in this kind of work. Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of underground pipelines of sewage systems. This method utilizes mud slurry that is formed around the pipes in order to stabilize the surrounding soil. In the pipe roof method the tubing elements that are constructed by slurry pipe jacking are near each other longitudinally, and create a rigid and stable lining before the excavation of the main tunnel. This paper discusses 'the application of a slurry pipe jacking system on 'the pipe roof method by means of numerical analysis. Because of the rigid behavior of the lining, the results show little subsidence, making this method a reliable method of constructing large tunnels with small cover in an urban area.
基金National Science and Technology Supporting Program,China(No.2011BAJ02B06)Aeronautical Science Foundation of China(No.20090738003)National Natural Science Foundations of China(No.51175378,No.50775161)
文摘Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.
基金supported by the financial support from National Natural Sci-ence Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(No.2020P04).
文摘Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempted to achieve this simulation.A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction.Accordingly,the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development ofDynaflowscripts,which is the key issue of variable boundary conditionmethod implementation.In this paper,Gongbei tunnel based on hybrid regional model involvingmulti-field coupling is simulated.Meanwhile,the variable boundary condition method for regional model is verified against model initialization and the ground deformation due to tunnel excavation is predicted via the proposed hybrid regional model.Compared with the monitoring data of actual engineering,the results indicated that the hybrid regional model has a good prediction effect.
基金supported by the National Natural Science Foundation of China(Grant No.52178342)the Tianjin Natural Science Foundation(No.21JCZDJC00590)the Shanghai Excellent Academic/Technical Leader Program(No.20XD1432500).
文摘The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel,especially under good ground conditions.However,the pipe roofing method has rarely been applied in soft ground,where the prediction and control of the ground settlement play important roles.This study proposes a sliced-soil-beam(SSB)model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground.The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics.As part of this work,the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground.The pipe roofing system was simplified to a threedimensional Winkler beam to consider the interaction between the soil and pipe roofing.The model was verified in a case study conducted in Shanghai,China,in which it provided the efficient and accurate prediction of settlement.Finally,the parameters affecting the ground settlement were analyzed.It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.