Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running...Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.展开更多
Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the...Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the footing being removed, meaning that it is not necessity to greatly change the surroundings of these bridges. While there are environmental and landscape advantages, there are also a few demerits for the overall land-scape designs, including demerits in the design of this proposed structure which consists of relatively slender parts. This proposed structure has already been constructed in areas where possibility of a severe earthquake is low. However, some problems that have yet to be examined are related to the use of this proposed structure in areas where earthquakes are frequent. Lacking detailed studies of its behavior during severe earthquakes, it is currently difficult to construct these structures in Japan. Consequently, it is necessary to investigate in detail limited performance about compression and bending moment, and earthquake- resistant performance of these structures in order to resolve these problems. In this paper, It was clarified the relationship between the rigidity of the ground and the effective buckling length by buckling analysis and elasto- plastic finite deformation analysis. Moreover, it was proposed a simplified formula using a proposed characteristic value β and several factors for analysis accuracy. A simplified formula would support to determine the effective buckling length to design the pier using the load-bearing capacity curve based on the slenderness ratio parameter.展开更多
Suitable microstructures required for semisolid casting were formed by using a vertical pipe.Different lengths of vertical pipe,slug dimensions and pouring time were used to investigate their influence on the microstr...Suitable microstructures required for semisolid casting were formed by using a vertical pipe.Different lengths of vertical pipe,slug dimensions and pouring time were used to investigate their influence on the microstructure of A356 alloy.The results indicate that at the same length of the vertical pipe,the morphology of the primary α(Al)gradually deteriorates by the enlargement in the slug size,but the deteriorating speed slows down with increasing pipe length.They also reveal that the increase in the pipe length improves the microstructure,whereas no further improvement appears when the pipe length reaches a certain value.The optimum length of the pipe obtained in the present work is 430 mm.The microstructure of larger slug poured at higher pouring temperature gets worse and it can be improved by moderately elongating pouring time.The relative mechanisms were also discussed.展开更多
Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great ...Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.展开更多
This research used the common decomposition of the velocity and pressure in an average part and a fluctuating part, for high Reynolds number, of the Navier-Stokes equation, which leads to the classic problem of turbul...This research used the common decomposition of the velocity and pressure in an average part and a fluctuating part, for high Reynolds number, of the Navier-Stokes equation, which leads to the classic problem of turbulent closure. The Prandtl’s mixing length model, based on the Boussinesq hypothesis and traditionally used for free shear flows, was chosen and adapted for internal flows to solve the closure problem. For channel flows, Johann Nikuradse proposed a model for the Prandtl mixing length. In the present paper, which has an academic character, the authors made a return to the model of the mixing length of Prandtl and the model of Nikuradse, to solve turbulent flows inside a plane channel. It was possible to develop an ordinary differential model for the velocity in the direction of the flow whose solution occurs computationally in a simple but extremely accurate way when compared with Direct Numerical Simulation databases. For the viscous stress on the wall, it was possible to determine the exact mathematical solution of the ordinary differential equation. It is a model of great academic value and even to be used as reference for verification of computational codes destined to the solution of complete numerical and computational models.展开更多
基金Supported by the Innovative Research Group Project of China National Natural Science Foundation(51821092)Key Project of China National Natural Science Foundation(U1762214).
文摘Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.
文摘Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the footing being removed, meaning that it is not necessity to greatly change the surroundings of these bridges. While there are environmental and landscape advantages, there are also a few demerits for the overall land-scape designs, including demerits in the design of this proposed structure which consists of relatively slender parts. This proposed structure has already been constructed in areas where possibility of a severe earthquake is low. However, some problems that have yet to be examined are related to the use of this proposed structure in areas where earthquakes are frequent. Lacking detailed studies of its behavior during severe earthquakes, it is currently difficult to construct these structures in Japan. Consequently, it is necessary to investigate in detail limited performance about compression and bending moment, and earthquake- resistant performance of these structures in order to resolve these problems. In this paper, It was clarified the relationship between the rigidity of the ground and the effective buckling length by buckling analysis and elasto- plastic finite deformation analysis. Moreover, it was proposed a simplified formula using a proposed characteristic value β and several factors for analysis accuracy. A simplified formula would support to determine the effective buckling length to design the pier using the load-bearing capacity curve based on the slenderness ratio parameter.
基金Project(2006AA03Z115)supported by the National Hi-tech Research and Development Program of ChinaProject(2006CB605203)supported by the National Basic Research Program of ChinaProject(50374012)supported by the National Natural Science Foundation of China
文摘Suitable microstructures required for semisolid casting were formed by using a vertical pipe.Different lengths of vertical pipe,slug dimensions and pouring time were used to investigate their influence on the microstructure of A356 alloy.The results indicate that at the same length of the vertical pipe,the morphology of the primary α(Al)gradually deteriorates by the enlargement in the slug size,but the deteriorating speed slows down with increasing pipe length.They also reveal that the increase in the pipe length improves the microstructure,whereas no further improvement appears when the pipe length reaches a certain value.The optimum length of the pipe obtained in the present work is 430 mm.The microstructure of larger slug poured at higher pouring temperature gets worse and it can be improved by moderately elongating pouring time.The relative mechanisms were also discussed.
基金Supported by National Nature Science Foundation of China(Grant No:51275340)
文摘Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.
文摘This research used the common decomposition of the velocity and pressure in an average part and a fluctuating part, for high Reynolds number, of the Navier-Stokes equation, which leads to the classic problem of turbulent closure. The Prandtl’s mixing length model, based on the Boussinesq hypothesis and traditionally used for free shear flows, was chosen and adapted for internal flows to solve the closure problem. For channel flows, Johann Nikuradse proposed a model for the Prandtl mixing length. In the present paper, which has an academic character, the authors made a return to the model of the mixing length of Prandtl and the model of Nikuradse, to solve turbulent flows inside a plane channel. It was possible to develop an ordinary differential model for the velocity in the direction of the flow whose solution occurs computationally in a simple but extremely accurate way when compared with Direct Numerical Simulation databases. For the viscous stress on the wall, it was possible to determine the exact mathematical solution of the ordinary differential equation. It is a model of great academic value and even to be used as reference for verification of computational codes destined to the solution of complete numerical and computational models.