[Objectives]This study was conducted to investigate the effects of piperidine derivatives on the proliferation and apoptosis of tumor cells(Hele).[Methods]The target end product(piperidine derivative)was synthesized t...[Objectives]This study was conducted to investigate the effects of piperidine derivatives on the proliferation and apoptosis of tumor cells(Hele).[Methods]The target end product(piperidine derivative)was synthesized through a series of organic reactions.The MTT assay was adopted to detect the effect of piperidine derivative on the proliferation activity of Hele cells.The ROS fluorescence probe method was used to detect the changes of reactive oxygen species.The JC-1 method was applied to detect the changes of MMP in Hele cells.Flow cytometry was adopted to detect the apoptosis of Hele cells.[Results]The cell survival rates were 70.84%,65.46%and 54.48%when the drug concentration was 100,110 and 120μmol/L,respectively.When the drug concentration increased to 120μmol/L,the cell survival rate decreased by nearly half.The fluorescence intensity of active oxygen in the control group was 1,and when the drug concentrations were 100,110 and 120μmol/L,the fluorescence intensity of active oxygen was,respectively,1.315,1.478 and 1.677,which were higher than that in the control group.The red/green fluorescence intensity of the MMP control group was 1.819,and that of drug groups was,respectively,1.643,1.164 and 0.665,which were lower than that of the control group.The apoptosis rates were 10.79%,22.91%and 38.54%at the drug concentrations of 100,110 and 120μmol/L,respectively,showing a concentration dependent effect.The results showed that the piperidine derivative could inhibit the proliferation of Hele cells and induce apoptosis,which was positively correlated with the concentration.[Conclusions]This study provides theoretical basis and reference for the anti-tumor research of piperidine.展开更多
Objective To determine the active components of Eupolyphaga sinensis Walker(Tu Bie Chong)and explore the mechanisms underlying its fracture-healing ability.Methods A modified Einhorn method was used to develop a rat t...Objective To determine the active components of Eupolyphaga sinensis Walker(Tu Bie Chong)and explore the mechanisms underlying its fracture-healing ability.Methods A modified Einhorn method was used to develop a rat tibial fracture model.Progression of bone healing was assessed using radiological methods.Safranin O/fast green and CD31 immunohistochemical staining were performed to evaluate the growth of bone cells and angiogenesis at the fracture site.Methylthiazoletetrazolium blue and wound healing assays were used to analyze cell viability and migration.The Transwell assay was used to explore the invasion capacity of the cells.Tubule formation assays were used to assess the angiogenesis capacity of human vascular endothelial cells(HUVECs).qRT-PCR was used to evaluate the changes in gene transcription levels.Results Tu Bie Chong fraction 3(TF3)significantly shortened the fracture healing time in model rats.X-ray results showed that on day 14,fracture healing in the TF3 treatment group was significantly better than that in the control group(P=.0086).Tissue staining showed that cartilage growth and the number of H-shaped blood vessels at the fracture site of the TF3 treatment group were better than those of the control group.In vitro,TF3 significantly promoted the proliferation and wound healing of MC3T3-E1s and HUVECs(all P<.01).Transwell assays showed that TF3 promoted the migration of HUVECs,but inhibited the migration of MC3T3-E1 cells.Tubule formation experiments confirmed that TF3 markedly promoted the ability of vascular endothelial cells to form microtubules.Gene expression analysis revealed that TF3 significantly promoted the expression of VEGFA,SPOCD1,NGF,and NGFR in HUVECs.In MC3T3-E1 cells,the transcript levels of RUNX2 and COL2A1 were significantly elevated following TF3 treatment.Conclusion TF3 promotes fracture healing by promoting bone regeneration associated with the RUNX2 pathway and angiogenesis associated with the VEGFA pathway.展开更多
Jiu Ai Tu(The Moxa Treatment)from the Song dynasty is the earliest surviving painting that focuses on the subject of acupuncture and moxibustion.This paper takes the medical activities depicted in the artwork as its r...Jiu Ai Tu(The Moxa Treatment)from the Song dynasty is the earliest surviving painting that focuses on the subject of acupuncture and moxibustion.This paper takes the medical activities depicted in the artwork as its research object and systematically analyzes the external treatment methods for abscesses during the Song dynasty reflected in Jiu Ai Tu.By examining the understanding of abscesses during that period,the paper explores the level of development in external medicine techniques.By analyzing the medical awareness and behaviors of patients when facing such severe illnesses,it aims to explore the societal cognition and experiences regarding health and disease.The paper attempts to present the folk medical ecology of the Song dynasty represented by Jiu Ai Tu.展开更多
A novel compound N-phenethyl-4-hydroxy-4-phenyl piperidine hydrochloride (C19H24ClNO·H2O) has been synthesized and structurally characterized by elemental analysis, IR, ^1H NMR spectra and single-crystal X-ray ...A novel compound N-phenethyl-4-hydroxy-4-phenyl piperidine hydrochloride (C19H24ClNO·H2O) has been synthesized and structurally characterized by elemental analysis, IR, ^1H NMR spectra and single-crystal X-ray diffraction. The crystal belongs to orthorhombic, space group P212121 with a = 8.6306(8), b = 11.0464(10), c = 19.3221(18)A^°, V = 1842.1(3)A^°^3, Z = 4, Dc =1.211 g/cm^3,μ = 0.217 mm^-1, Mr= 335.86, F(000) = 720, S = 0.973, R = 0.0420 and wR = 0.1009 for 3627 unique reflections with 3157 observed ones (I 〉 2σ(I)). In the crystal, the dihedral angles made by piperidine ring with two benzene rings are 84.8(6) and 62.5(7)°, respectively. Intermolecular O-H…O and O-H…Cl hydrogen bonds involving water molecules form chains along the b axis, which stabilizes the crystal structure. The preliminary bioactivity tests indicated that the title compound has good effect of cellular growth inhibition to K562 cells and potential bioactivity of anti-leukemia.展开更多
Piperidine absorbs CO2 and H2O in air to form a molecular complex: piperidium-l-piperidinecarboxylate-H2O. The structure of the complex was characterized by X-ray single crystal diffraction. The crystal structure was...Piperidine absorbs CO2 and H2O in air to form a molecular complex: piperidium-l-piperidinecarboxylate-H2O. The structure of the complex was characterized by X-ray single crystal diffraction. The crystal structure was determined to be triclinic, space group P1^-with a=0.648 6(8) nm, b=0.809 200) nm, c= 1.357 1(16) nm, a=96.96706)°, β =102.506(15)°,γ=104.202 05)°, Z=2. The complex is stabilized via five hydrogen bonds between the three components, N-O electrostatic interaction and O-O interaction (electron transfer) betweenl-piperidinecarboxylate and H2O. Due to electron transference of carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O-H bond is considerably shorter than that of the free molecule of water. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.展开更多
The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to ch...The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to characterize the crystal phases,textural properties,and particle morphologies of the zeolite samples.The crystallization behavior of the FER zeolite was found to be directly related to crystallization temperature.At150?C,pure FER phase was observed throughout crystallization.At160–170?C,MWW phase appeared first and gradually transformed into FER phase over time,indicating that the FER phase was thermodynamically favored.In the piperidine‐Na2O‐H2O synthetic system,alkalinity proved to be the crucial factor determining the size and textural properties of FER zeolite.Furthermore,the obtained FER samples exhibited good catalytic performance in the skeletal isomerization of1‐butene.展开更多
Direct Analysis in Real Time Mass Spectrometry(DART-MS)was applied to identify and study the distribution profile of piperidine alkaloids in different parts of Prosopis juliflora,without isolation and separation of th...Direct Analysis in Real Time Mass Spectrometry(DART-MS)was applied to identify and study the distribution profile of piperidine alkaloids in different parts of Prosopis juliflora,without isolation and separation of the compounds by standard chromatographic techniques.With the help of DART-MS,chemical fingerprint of raw plant parts were generated,which revealed the presence of piperidine alkaloids in leaf,pod and flower.A comparative study of the distribution pattern,showed variation in the presence and distribution of these alkaloids in various parts of P.juliflora.The leaves and pod displayed the largest alkaloid pattern with a total of 12 different alkaloids in each part,whereas only 4 alkaloids were present in flower.Alkaloids:julifloridine,prosopine,prosopinine and prosafrinine were ubiquitously distributed in all the alkaloid rich plant parts.Juliprosopine was pre-eminet alkaloid in leaf,whereas pod and flower displayed copious amounts of julifloridine.展开更多
The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/gu...The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/guanine nucleotides are explored by using B3LYP hybrid functional and IEF-PCM salvation models. For the trans-[Pt(H2O)2(NH3)(pip)]2+ and trans-[PtCl(H2O)(NH3)(pip)]+ complexes,the computed barrier heights in aqueous solution are 13.5/13.5 and 11.6/11.6 kcal/mol from trans-Pt-chloroaqua complex to trans/cis-monoadduct for adenine and guanine,and the corresponding values are 20.7/20.7 and 18.8/18.8 kcal/mol from trans-Pt-diaqua complex to trans/cis-monoadduct for adenine and guanine,respectively. For trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+,the corresponding values are 21.5/21.3 and 19.4/19.4 kcal/mol,and 26.0/26.0 and 20.7/20.8 kal/mol for adenine and guanine,respectively. Our calculations demonstrate that the barrier heights of chloroaqua are lower than the corresponding values of diaqua for adenine and guanine. In addition,the free energies of activation for guanine in aqueous solution are all smaller than that for adenine,which predicts a preference of 1.9 kcal/mol when trans-[PtCl(H2O)(NH3)(pip)]+ and trans-[Pt(H2O)2(NH3)(pip)]2+ are the active agents and ~1.9 and ~ 5.3 kcal/mol when trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+ are the active agents,respectively. For the reaction of trans-Pt-chloroaqua (or diaqua) to cis-monoadduct,we obtain the same transition-state structure as from the reaction of trans-Pt-chloroaqua (or diaqua) to trans-monoadduct,which seems that the trans-Pt-chloroaqua (or diaqua) complex can generate trans-or cis-monoadduct via the same transition-state.展开更多
Two sets of CCD photometric observations for contact binary TU Boo were obtained in 2020 and 2021.Different from its asymmetric light curves published from the literature,our BVRcIc-band curves show that the heights o...Two sets of CCD photometric observations for contact binary TU Boo were obtained in 2020 and 2021.Different from its asymmetric light curves published from the literature,our BVRcIc-band curves show that the heights of maximum are almost equal.These distortions of light curves possibly indicate that the components were active in past 25 yr,but they were stable in the last two years.For total-eclipse binary TU Boo,due to some star-spots on the surface of the components,the physical structure obtained by many investigators are different.Therefore,the symmetric multi-color light curves in 2020,2021 are important for understanding configuration and evolution of this system.By using the Wilson–Devinney program,it is confirmed that TU Boo is an A-type shallow-contact binary with the temperature difference ofΔT=152 K and fill-out of f=14.67%.In the O−C diagram of orbital period analysis,a cyclic oscillation superimposed on a continuous decrease was determined.The long-term decreasing is often explained by the mass transfer from the more massive star to less massive one,this system will evolve into a deeper contact binary with time.The cyclic oscillations computed from much more CCD times of light minimum maybe result from the light-travel time effect via the presence of a third body.These characters of structure,evolution and ternary belong to typical A-type W UMa binaries with spectral G.展开更多
基金Supported by Undergraduate Innovation and Entrepreneurship Training Program of Suzhou University in 2024(Synthesis and Application of Novel Thiazole Fluorescent Probes)Key Project of Natural Science Research in Colleges and Universities of Department of Education of Anhui Province(KJ2021A1109).
文摘[Objectives]This study was conducted to investigate the effects of piperidine derivatives on the proliferation and apoptosis of tumor cells(Hele).[Methods]The target end product(piperidine derivative)was synthesized through a series of organic reactions.The MTT assay was adopted to detect the effect of piperidine derivative on the proliferation activity of Hele cells.The ROS fluorescence probe method was used to detect the changes of reactive oxygen species.The JC-1 method was applied to detect the changes of MMP in Hele cells.Flow cytometry was adopted to detect the apoptosis of Hele cells.[Results]The cell survival rates were 70.84%,65.46%and 54.48%when the drug concentration was 100,110 and 120μmol/L,respectively.When the drug concentration increased to 120μmol/L,the cell survival rate decreased by nearly half.The fluorescence intensity of active oxygen in the control group was 1,and when the drug concentrations were 100,110 and 120μmol/L,the fluorescence intensity of active oxygen was,respectively,1.315,1.478 and 1.677,which were higher than that in the control group.The red/green fluorescence intensity of the MMP control group was 1.819,and that of drug groups was,respectively,1.643,1.164 and 0.665,which were lower than that of the control group.The apoptosis rates were 10.79%,22.91%and 38.54%at the drug concentrations of 100,110 and 120μmol/L,respectively,showing a concentration dependent effect.The results showed that the piperidine derivative could inhibit the proliferation of Hele cells and induce apoptosis,which was positively correlated with the concentration.[Conclusions]This study provides theoretical basis and reference for the anti-tumor research of piperidine.
基金supported by“the Fundamental Research Funds for the Central Universities”(2020-JYB-ZDGG-054)“Beijing university of Chinese medicine XINAO Award Fund”(2019)Beijing University of Chinese Medicine Scientific Research and Development Fund(2170072220002).
文摘Objective To determine the active components of Eupolyphaga sinensis Walker(Tu Bie Chong)and explore the mechanisms underlying its fracture-healing ability.Methods A modified Einhorn method was used to develop a rat tibial fracture model.Progression of bone healing was assessed using radiological methods.Safranin O/fast green and CD31 immunohistochemical staining were performed to evaluate the growth of bone cells and angiogenesis at the fracture site.Methylthiazoletetrazolium blue and wound healing assays were used to analyze cell viability and migration.The Transwell assay was used to explore the invasion capacity of the cells.Tubule formation assays were used to assess the angiogenesis capacity of human vascular endothelial cells(HUVECs).qRT-PCR was used to evaluate the changes in gene transcription levels.Results Tu Bie Chong fraction 3(TF3)significantly shortened the fracture healing time in model rats.X-ray results showed that on day 14,fracture healing in the TF3 treatment group was significantly better than that in the control group(P=.0086).Tissue staining showed that cartilage growth and the number of H-shaped blood vessels at the fracture site of the TF3 treatment group were better than those of the control group.In vitro,TF3 significantly promoted the proliferation and wound healing of MC3T3-E1s and HUVECs(all P<.01).Transwell assays showed that TF3 promoted the migration of HUVECs,but inhibited the migration of MC3T3-E1 cells.Tubule formation experiments confirmed that TF3 markedly promoted the ability of vascular endothelial cells to form microtubules.Gene expression analysis revealed that TF3 significantly promoted the expression of VEGFA,SPOCD1,NGF,and NGFR in HUVECs.In MC3T3-E1 cells,the transcript levels of RUNX2 and COL2A1 were significantly elevated following TF3 treatment.Conclusion TF3 promotes fracture healing by promoting bone regeneration associated with the RUNX2 pathway and angiogenesis associated with the VEGFA pathway.
基金financed from the grant of the National Social Science Foundation General Project(No.23BZS010)。
文摘Jiu Ai Tu(The Moxa Treatment)from the Song dynasty is the earliest surviving painting that focuses on the subject of acupuncture and moxibustion.This paper takes the medical activities depicted in the artwork as its research object and systematically analyzes the external treatment methods for abscesses during the Song dynasty reflected in Jiu Ai Tu.By examining the understanding of abscesses during that period,the paper explores the level of development in external medicine techniques.By analyzing the medical awareness and behaviors of patients when facing such severe illnesses,it aims to explore the societal cognition and experiences regarding health and disease.The paper attempts to present the folk medical ecology of the Song dynasty represented by Jiu Ai Tu.
基金supported by the NNFSC (No. 20672073)Shanghai Leading Academic Discipline (No. T0402)
文摘A novel compound N-phenethyl-4-hydroxy-4-phenyl piperidine hydrochloride (C19H24ClNO·H2O) has been synthesized and structurally characterized by elemental analysis, IR, ^1H NMR spectra and single-crystal X-ray diffraction. The crystal belongs to orthorhombic, space group P212121 with a = 8.6306(8), b = 11.0464(10), c = 19.3221(18)A^°, V = 1842.1(3)A^°^3, Z = 4, Dc =1.211 g/cm^3,μ = 0.217 mm^-1, Mr= 335.86, F(000) = 720, S = 0.973, R = 0.0420 and wR = 0.1009 for 3627 unique reflections with 3157 observed ones (I 〉 2σ(I)). In the crystal, the dihedral angles made by piperidine ring with two benzene rings are 84.8(6) and 62.5(7)°, respectively. Intermolecular O-H…O and O-H…Cl hydrogen bonds involving water molecules form chains along the b axis, which stabilizes the crystal structure. The preliminary bioactivity tests indicated that the title compound has good effect of cellular growth inhibition to K562 cells and potential bioactivity of anti-leukemia.
基金Supported by Project of Education Department of Liaoning Province(20040084)
文摘Piperidine absorbs CO2 and H2O in air to form a molecular complex: piperidium-l-piperidinecarboxylate-H2O. The structure of the complex was characterized by X-ray single crystal diffraction. The crystal structure was determined to be triclinic, space group P1^-with a=0.648 6(8) nm, b=0.809 200) nm, c= 1.357 1(16) nm, a=96.96706)°, β =102.506(15)°,γ=104.202 05)°, Z=2. The complex is stabilized via five hydrogen bonds between the three components, N-O electrostatic interaction and O-O interaction (electron transfer) betweenl-piperidinecarboxylate and H2O. Due to electron transference of carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O-H bond is considerably shorter than that of the free molecule of water. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.
基金supported by the National Natural Science Foundation of China(21376235)Natural Science Foundation of Liaoning Province(201602740)~~
文摘The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to characterize the crystal phases,textural properties,and particle morphologies of the zeolite samples.The crystallization behavior of the FER zeolite was found to be directly related to crystallization temperature.At150?C,pure FER phase was observed throughout crystallization.At160–170?C,MWW phase appeared first and gradually transformed into FER phase over time,indicating that the FER phase was thermodynamically favored.In the piperidine‐Na2O‐H2O synthetic system,alkalinity proved to be the crucial factor determining the size and textural properties of FER zeolite.Furthermore,the obtained FER samples exhibited good catalytic performance in the skeletal isomerization of1‐butene.
文摘Direct Analysis in Real Time Mass Spectrometry(DART-MS)was applied to identify and study the distribution profile of piperidine alkaloids in different parts of Prosopis juliflora,without isolation and separation of the compounds by standard chromatographic techniques.With the help of DART-MS,chemical fingerprint of raw plant parts were generated,which revealed the presence of piperidine alkaloids in leaf,pod and flower.A comparative study of the distribution pattern,showed variation in the presence and distribution of these alkaloids in various parts of P.juliflora.The leaves and pod displayed the largest alkaloid pattern with a total of 12 different alkaloids in each part,whereas only 4 alkaloids were present in flower.Alkaloids:julifloridine,prosopine,prosopinine and prosafrinine were ubiquitously distributed in all the alkaloid rich plant parts.Juliprosopine was pre-eminet alkaloid in leaf,whereas pod and flower displayed copious amounts of julifloridine.
基金supported from the National Natural Science Foundation of China (No. 20971056)
文摘The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/guanine nucleotides are explored by using B3LYP hybrid functional and IEF-PCM salvation models. For the trans-[Pt(H2O)2(NH3)(pip)]2+ and trans-[PtCl(H2O)(NH3)(pip)]+ complexes,the computed barrier heights in aqueous solution are 13.5/13.5 and 11.6/11.6 kcal/mol from trans-Pt-chloroaqua complex to trans/cis-monoadduct for adenine and guanine,and the corresponding values are 20.7/20.7 and 18.8/18.8 kcal/mol from trans-Pt-diaqua complex to trans/cis-monoadduct for adenine and guanine,respectively. For trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+,the corresponding values are 21.5/21.3 and 19.4/19.4 kcal/mol,and 26.0/26.0 and 20.7/20.8 kal/mol for adenine and guanine,respectively. Our calculations demonstrate that the barrier heights of chloroaqua are lower than the corresponding values of diaqua for adenine and guanine. In addition,the free energies of activation for guanine in aqueous solution are all smaller than that for adenine,which predicts a preference of 1.9 kcal/mol when trans-[PtCl(H2O)(NH3)(pip)]+ and trans-[Pt(H2O)2(NH3)(pip)]2+ are the active agents and ~1.9 and ~ 5.3 kcal/mol when trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+ are the active agents,respectively. For the reaction of trans-Pt-chloroaqua (or diaqua) to cis-monoadduct,we obtain the same transition-state structure as from the reaction of trans-Pt-chloroaqua (or diaqua) to trans-monoadduct,which seems that the trans-Pt-chloroaqua (or diaqua) complex can generate trans-or cis-monoadduct via the same transition-state.
基金sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022DO1A164)the Joint Research Found (No.U1831109)in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC)and Chinese Academy of Sciences (CAS)the Natural Science Foundation of Shandong Province (No.ZR2020QA048)。
文摘Two sets of CCD photometric observations for contact binary TU Boo were obtained in 2020 and 2021.Different from its asymmetric light curves published from the literature,our BVRcIc-band curves show that the heights of maximum are almost equal.These distortions of light curves possibly indicate that the components were active in past 25 yr,but they were stable in the last two years.For total-eclipse binary TU Boo,due to some star-spots on the surface of the components,the physical structure obtained by many investigators are different.Therefore,the symmetric multi-color light curves in 2020,2021 are important for understanding configuration and evolution of this system.By using the Wilson–Devinney program,it is confirmed that TU Boo is an A-type shallow-contact binary with the temperature difference ofΔT=152 K and fill-out of f=14.67%.In the O−C diagram of orbital period analysis,a cyclic oscillation superimposed on a continuous decrease was determined.The long-term decreasing is often explained by the mass transfer from the more massive star to less massive one,this system will evolve into a deeper contact binary with time.The cyclic oscillations computed from much more CCD times of light minimum maybe result from the light-travel time effect via the presence of a third body.These characters of structure,evolution and ternary belong to typical A-type W UMa binaries with spectral G.