Pisha sandstone is a soft rock found in the southern zone of the Inner Mongolia Autonomous Region of Inner Mongolia. The presence of soft Pisha sandstone in the middle reaches of the Yellow River coincides with large ...Pisha sandstone is a soft rock found in the southern zone of the Inner Mongolia Autonomous Region of Inner Mongolia. The presence of soft Pisha sandstone in the middle reaches of the Yellow River coincides with large areas of bedrock erosion in the river’s basin, with the average total erosion modulus as high as 44 570 t/(km^2·a). Such high levels of erosion are one of the main sources of coarse mud and sands in the Yellow River. Erosion by gravitational forces such as snow glide and landslip are the main erosion types in Pisha sandstone region. The gravity erosion modulus can be as high as 25 615 t/(km^2·a), accounting for 30.6% of the total average erosion. Our paper investigates the characteristics of Pisha sandstone in relation to the development of gravity erosion mechanisms. We conducted field investigations in Pisha sandstone region for original state rock sampling. Test results from analyses of the rock properties indicate that the mineral composition, structure and microstructure characteristics of Pisha sandstone determine its varying capacity to resist weathering. Degrees of weathering in slightly different lithological layers of Pisha sandstone lead to different erosion rates. In this way, erosion forces combined with the varying lithological strata in the rock aggravate gravitational erosion in Pisha sandstone.展开更多
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi...The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.展开更多
基金supported by the public program of Ministry of Science and Technology of China (Grant No 2005DIB3J068)
文摘Pisha sandstone is a soft rock found in the southern zone of the Inner Mongolia Autonomous Region of Inner Mongolia. The presence of soft Pisha sandstone in the middle reaches of the Yellow River coincides with large areas of bedrock erosion in the river’s basin, with the average total erosion modulus as high as 44 570 t/(km^2·a). Such high levels of erosion are one of the main sources of coarse mud and sands in the Yellow River. Erosion by gravitational forces such as snow glide and landslip are the main erosion types in Pisha sandstone region. The gravity erosion modulus can be as high as 25 615 t/(km^2·a), accounting for 30.6% of the total average erosion. Our paper investigates the characteristics of Pisha sandstone in relation to the development of gravity erosion mechanisms. We conducted field investigations in Pisha sandstone region for original state rock sampling. Test results from analyses of the rock properties indicate that the mineral composition, structure and microstructure characteristics of Pisha sandstone determine its varying capacity to resist weathering. Degrees of weathering in slightly different lithological layers of Pisha sandstone lead to different erosion rates. In this way, erosion forces combined with the varying lithological strata in the rock aggravate gravitational erosion in Pisha sandstone.
基金supported by the Key Technology and Demonstration of Damaged Ecosystem Restoration and Reconstruction in Shanxi–Shaanxi–Inner Mongolia Energy Base Location (KZCX2-XB3-13-02)
文摘The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.