期刊文献+
共找到1,321篇文章
< 1 2 67 >
每页显示 20 50 100
Blade pitch control of straight-bladed vertical axis wind turbine 被引量:2
1
作者 梁迎彬 张立勋 +1 位作者 李二肖 张凤月 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1106-1114,共9页
Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis ... Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6. 展开更多
关键词 straight-bladed vertical axis wind turbine collective pitch control individual pitch control self-starting capacity
下载PDF
Fault tolerant control of electric pitch control system based on single current detection
2
作者 李宏伟 付勃 +2 位作者 董海鹰 杨立霞 王睿敏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期63-70,共8页
In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is sing... In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified. 展开更多
关键词 electric pitch control fault tolerant control variable universe fuzzy control single current detection
下载PDF
Research on Pitch Control Strategies of Horizontal Axis Tidal Current Turbine 被引量:3
3
作者 WANG Bing-zhen HU Teng-yan +1 位作者 GUO Yi ZHANG Yuan-fei 《China Ocean Engineering》 SCIE EI CSCD 2020年第2期223-231,共9页
Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between t... Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between the turbine and generator under various current velocities is studied,and the influence of the pitch angle on the matching is analyzed.For the problem of maximum power output in case of low current speed and limiting power in high current speed,the relation between optimal pitch angle and output power is analyzed.On the basis of dynamic characteristic analysis,the variable pitch control strategy is developed.The performance of the turbine under various tidal conditions is simulated.The research results show that the designed controller enables the turbine to operate efficiently under the condition of low current speed,and achieve the goal of limited power at high current speed. 展开更多
关键词 tidal energy horizontal axis tidal current turbine(HATT) pitch control SIMULATION
下载PDF
Modeling and Analyzing Dynamic Response for An Offshore Bottom-Fixed Wind Turbine with Individual Pitch Control 被引量:1
4
作者 XIE Shuang-yi ZHANG Kai-fei +2 位作者 HE Jiao GAO Jian ZHANG Cheng-lin 《China Ocean Engineering》 SCIE EI CSCD 2022年第3期372-383,共12页
The asymmetric or periodically varying blade loads resulted by wind shear become more significant as the blade length is increased to capture more wind power.Additionally,compared with the onshore wind turbines,their ... The asymmetric or periodically varying blade loads resulted by wind shear become more significant as the blade length is increased to capture more wind power.Additionally,compared with the onshore wind turbines,their offshore counterparts are subjected to additional wave loadings in addition to wind loadings within their lifetime.Therefore,vibration control and fatigue load mitigation are crucial for safe operation of large-scale offshore wind turbines.In view of this,a multi-body model of an offshore bottom-fixed wind turbine including a detailed drivetrain is established in this paper.Then,an individual pitch controller(IPC)is designed using disturbance accommodating control.State feedback is used to add damping in flexible modes of concern,and a state estimator is designed to predict unmeasured signals.Continued,a coupled aero-hydro-servo-elastic model is constructed.Based on this coupled model,the load reduction effect of IPC and the dynamic responses of the drivetrain are investigated.The results showed that the designed IPC can effectively reduce the structural loads of the wind turbine while stabilizing the turbine power out-put.Moreover,it is found that the drivetrain dynamic responses are improved under IPC. 展开更多
关键词 wind turbine individual pitch controller disturbance accommodating control multi-body modeling drivetrain
下载PDF
OBSO Based Fractional PID for MPPT-Pitch Control of Wind Turbine Systems
5
作者 Ibrahim M.Mehedi Ubaid M.Al-Saggaf +3 位作者 Mahendiran T.Vellingiri Ahmad H.Milyani Nordin Bin Saad Nor Zaihar Bin Yahaya 《Computers, Materials & Continua》 SCIE EI 2022年第5期4001-4017,共17页
In recent times,wind energy receives maximum attention and has become a significant green energy source globally.The wind turbine(WT)entered into several domains such as power electronics that are employed to assist t... In recent times,wind energy receives maximum attention and has become a significant green energy source globally.The wind turbine(WT)entered into several domains such as power electronics that are employed to assist the connection process of a wind energy system and grid.The turbulent characteristics of wind profile along with uncertainty in the design of WT make it highly challenging for prolific power extraction.The pitch control angle is employed to effectively operate the WT at the above nominal wind speed.Besides,the pitch controller needs to be intelligent for the extraction of sustainable secure energy and keep WTs in a safe operating region.To achieve this,proportional–integral–derivative(PID)controllers are widely used and the choice of optimal parameters in the PID controllers needs to be properly selected.With this motivation,this paper designs an oppositional brain storm optimization(OBSO)based fractional order PID(FOPID)design for sustainable and secure energy in WT systems.The proposed model aims to effectually extract the maximum power point(MPPT)in the low range of weather conditions and save the WT in high wind regions by the use of pitch control.The OBSO algorithm is derived from the integration of oppositional based learning(OBL)concept with the traditional BSO algorithm in order to improve the convergence rate,which is then applied to effectively choose the parameters involved in the FOPID controller.The performance of the presented model is validated on the pitch control of a 5 MW WT and the results are examined under different dimensions.The simulation outcomes ensured the promising characteristics of the proposed model over the other methods. 展开更多
关键词 Wind turbine wind energy pitch control brain storm optimization PID controller maximum power point
下载PDF
On Belly-flap for Pitch Control at Transonic Airfoil
6
作者 SHEN Dong ZHANG Bin-qian CHEN Ying-chun 《International Journal of Plant Engineering and Management》 2011年第2期77-83,共7页
One of the issues about Blended-Wing-Body configuration (BWB) is its difficulty in pitch control due to the missing tail. To solve this problem, a novel pitch control surface, belly-flap, has been presented. In this... One of the issues about Blended-Wing-Body configuration (BWB) is its difficulty in pitch control due to the missing tail. To solve this problem, a novel pitch control surface, belly-flap, has been presented. In this paper, the feasibility of belly-flap being used as a transonic pitch control device for tailless configuration is investigated on a BWB in-body airfoil, using the computationalfluid dynamic (CFD) method. The size, location and deflection angle of the flap are studied to detect their effect on the aerodynamic characteristics. The results reveal that the bubble separation due to the belly-flap can affect shock position on the upper surface of the airfoil and change the surface pressure distribution. By choosing appropriate geometry parameters, the load distribution can be improved to obtain significant pitch-up moment increment in a wide angle of attack with no lift-loss and less lift-drag ratio decrement. 展开更多
关键词 BWB belly-flap pitch control shockwave position
下载PDF
Robust Adaptive Pitch Control of Floating Wind Turbines
7
作者 Ibrahim F. Jasim Najah F. Jasim 《Journal of Energy and Power Engineering》 2012年第5期845-848,共4页
In this paper, a modified sliding-mode adaptive controller is derived to achieve stability and output regulation for a class of dynamical systems represented by a non-homogeneous differential equation with unknown tim... In this paper, a modified sliding-mode adaptive controller is derived to achieve stability and output regulation for a class of dynamical systems represented by a non-homogeneous differential equation with unknown time-varying coefficients and unknown force function. In this scheme, the control law is constructed in terms of estimated values for the bounds of the unknown coefficients, where these values are continuously updated by adaptive laws to ensure asymptotic convergence to zero for the output function. The proposed controller is applied to solve the problem of pitch angle regulation for a floating wind turbine with dynamic uncertainty and external disturbances. Numerical simulations are performed to demonstrate the validity of the designed controller to achieve the desired pitch angle for the floating turbine's body. 展开更多
关键词 pitch control robust adaptive control floating wind turbines.
下载PDF
Nonsingular Terminal Sliding Mode Control With Ultra-Local Model and Single Input Interval Type-2 Fuzzy Logic Control for Pitch Control of Wind Turbines 被引量:7
8
作者 Saber Abrazeh Ahmad Parvaresh +3 位作者 Saeid-Reza Mohseni Meisam Jahanshahi Zeitouni Meysam Gheisarnejad Mohammad Hassan Khooban 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期690-700,共11页
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T... As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed. 展开更多
关键词 Interval type-2(IT2)fuzzy logic control modelindependent nonsingular terminal sliding-mode control(MINTSMC) pitch angle control real-time software-in-the-loop(RT-SiL)
下载PDF
The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and PID Control 被引量:1
9
作者 Rui Guo Jinsong Du +1 位作者 Jinghui Wu Yiyang Liu 《Energy and Power Engineering》 2013年第3期6-10,共5页
Due to the special features of great inertia, pure lag and non-linearity provided with wind turbine, coupled with complex and variable working condition, it is difficult to achieve satisfactory control results simply ... Due to the special features of great inertia, pure lag and non-linearity provided with wind turbine, coupled with complex and variable working condition, it is difficult to achieve satisfactory control results simply by employing traditional PID, which has the drawbacks such as adjustment inconvenience, poor anti-interference, and large overshoot, and prolonged adjust span. This paper puts forward one type of improved controller combining Fuzzy Control with PID Control. With larger speed deviation, the controller emphasizes Fuzzy Control to speed system response;with less speed deviation, the controller emphasizes PID Control to improve control accuracy. Simulation Test directing at the algorithm is based on the Bladed software, with the positive result of improved dynamic and static performance of wind turbine under large disturbance. 展开更多
关键词 FUZZY control pitch control WIND TURBINE Bladed
下载PDF
Development of swashplateless helicopter blade pitch control system using the limited angle direct-drive motor(LADDM) 被引量:2
10
作者 Wang Jian Wang Haowen Wu Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1416-1425,共10页
It can be greatly beneficial to remove the swashplate of conventional helicopter, because the swashplate is usually complicated, aerodynamically resistive, and obstacle of more complex pitch control for improving perf... It can be greatly beneficial to remove the swashplate of conventional helicopter, because the swashplate is usually complicated, aerodynamically resistive, and obstacle of more complex pitch control for improving performance. The present technologies for helicopter vibration reduction are usually narrow in effective range or requiring additional actuators and signal transfer links, and more effective technology is desired. Helicopter blade pitch control system, which is removed of swashplate and integrated high-frequency pitch control function for active vibration reduction, is likely the suitable solution at current technical level. Several potential implementation schemes are discussed, such as blades being directly or indirectly driven by actuators mounted in rotating frame and application of different types of actuators, especially implementation schemes of electro-mechanical actuator with or without gear reducer. It is found that swashplateless blade pitch control system based on specially designed limited angle direct-drive motor (LADDM) is a more practical implementation scheme. An experimental prototype of the finally selected implementation scheme has been designed, fabricated and tested on rotor tower. The test results show considerable feasibility of the swashplateless helicopter blade pitch control system using the LADDM. 展开更多
关键词 Blade pitch control HELICOPTER Limited angle direct-drivemotor Rotor tower test Swashplateless
原文传递
Numerical analysis of the performance of a three-bladed vertical-axis turbine with active pitch control using a coupled unsteady Reynolds-averaged Navier-Stokes and actuator line model 被引量:1
11
作者 Rui-wen Zhao Angus C.W.Creech +2 位作者 Ye Li Vengatesan Venugopal Alistair G.L.Borthwick 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第3期516-532,共17页
In this paper,we present a numerical model of a vertical-axis turbine(VAT)with active-pitch torque control.The model is based upon the Wind and Tidal Turbine Embedded Simulator(WATTES)and WATTES-V turbine realisations... In this paper,we present a numerical model of a vertical-axis turbine(VAT)with active-pitch torque control.The model is based upon the Wind and Tidal Turbine Embedded Simulator(WATTES)and WATTES-V turbine realisations in conjunction with the actuator line method(ALM),and uses OpenFOAM to solve the unsteady Reynolds-averaged Navier-Stokes(URANS)equations with two-equation k-εturbulence closure.Our novel pitch-controlled system is based on an even pressure drop across the entire rotor to mitigate against dynamic stall at low tip speed ratio.The numerical model is validated against experimental measurements and alternative numerical predictions of the hydrodynamic performance of a 1:6 scale UNH-RM2 hydrokinetic turbine.Simulations deploying the variable pitch mechanism exhibit improved turbine performance compared to measured data and fixed zero-pitch model predictions.Near-wake characteristics are investigated by examining the vorticity distribution near the turbine.The pitch-controlled system is demonstrated to theoretically decrease turbulence generated by turbine rotations,mitigate the intensity of vortex shedding and size of detached vortices,and significantly enhance the performance of a vertical-axis hydrokinetic turbine for rated tip-speed ratios. 展开更多
关键词 Vertical-axis turbine pitch control hydrodynamic performance unsteady Reynolds-averaged Navier-Stokes(URANS) numerical simulation
原文传递
Full Range Power Control Strategies for Variable-Speed Fixed-Pitch Wind Turbines 被引量:1
12
作者 CHEN Jie GONG Chunying CHEN Jiawei CHEN Ran YAN Yangguang 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0014-I0014,共1页
关键词 风力发电机组 功率控制策略 定桨距 风力涡轮机 变速 公用事业 农村地区 城市地区
下载PDF
Dynamic Positioning Control of Surge−Pitch Coupled Motion for Small-Waterplane-Area Marine Structures
13
作者 HE Hua-cheng XU Sheng-wen +1 位作者 WANG Lei WANG Xue-feng 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期598-608,共11页
For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undes... For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions.In this paper,three control laws are investigated to suppress the induced pitch motion by adding pitch rate,pitch angle or pitch acceleration into the feedback control loop.Extensive numerical simulations are conducted with a semi-submersible platform for each control law.The influences of additional terms on surge−pitch coupled motions are analyzed in both frequency and time domain.The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered.It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch,and its performance is highly dependent on the frequency distribution of external forces,while adding pitch rate into the feedback loop is always effective in mitigating surge−pitch coupled motions. 展开更多
关键词 surge−pitch coupled motion control small-waterplane-area marine structures actuation constraints frequency and time domain analysis
下载PDF
Intelligent control for large-scale variable speed variable pitch wind turbines 被引量:12
14
作者 XinfangZHANG DapingXU YibingLIU 《控制理论与应用(英文版)》 EI 2004年第3期305-311,共7页
Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turb... Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control. 展开更多
关键词 Wind turbines Adaptive fuzzy control Least square support vector machine Variable speed Variable pitch
下载PDF
Integrated Guidance and Control of Homing Missiles Against Ground Fixed Targets 被引量:23
15
作者 侯明哲 段广仁 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第2期162-168,共7页
This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed ... This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme. 展开更多
关键词 integrated guidance and control pitch plane ground fixed target nonlinear adaptive
下载PDF
Numerical and Experimental Analysis of A Vertical-Axis Eccentric-disc Variable-Pitch Turbine(VEVT) 被引量:1
16
作者 CHEN Hai-long JING Feng-mei +3 位作者 LIU Heng-xu DING Hua-qiu KONG Fan-kai SHI Jian 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期411-420,共10页
A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on do... A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed.The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine,and the three-dimensional model of the turbine is established.Kinematics analysis of the eccentric disc pitch control mechanism is carried out.Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived.Kinematics analysis and simulation are carried out,and the motion law of the corresponding mechanical system is obtained.By analyzing the force and motion of blade of VEVT,the expressions of the important parameters such as deflection angle,attack angle and energy utilization coefficient are obtained.The lateral induced velocity coefficient is acquired by momentum theorem,the hydrodynamic parameters such as energy utilization coefficient are derived,and the hydrodynamic characteristics of VEVT are also obtained.The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions,which verifies that VEVT has good self-startup performance and high energy capture efficiency. 展开更多
关键词 vertical axis variable pitch turbine eccentric disc pitch control mechanism kinematics analysis hydraulic analysis flume experiment
下载PDF
半潜式风机变桨距控制优化研究
17
作者 邓森 葛双义 王锋 《水力发电》 CAS 2025年第1期88-92,共5页
以半潜浮式风机为研究对象,应用控制系统仿真软件MATLAB/Simulink和基于水动力和空气动力耦合的FAST软件进行联合仿真计算。以最小化功率波动和抑制平台运动为控制目标,利用人工蚁群算法来对变桨控制的PID控制器参数进行优化,得到了风... 以半潜浮式风机为研究对象,应用控制系统仿真软件MATLAB/Simulink和基于水动力和空气动力耦合的FAST软件进行联合仿真计算。以最小化功率波动和抑制平台运动为控制目标,利用人工蚁群算法来对变桨控制的PID控制器参数进行优化,得到了风浪联合作用下的海上浮式风机变桨距ACO-PID控制器,并将其与基线PI控制器在功率输出、转子转速、叶片桨距角和平台纵摇角参数方面进行了对比分析。结果显示,ACO-PID控制器较好的抑制了功率的波动和平台的纵摇运动,并一定程度的降低了风机主要部位的疲劳载荷,提高了风机结构的安全性,增加了风电机组的使用寿命。 展开更多
关键词 半潜式风机 数值仿真 变桨距控制 人工蚁群算法 动力响应
下载PDF
Observer-Based Disturbance Accommodation Control Strategy for Useful Lifetime Control and Structural Load Mitigation of Wind Turbines
18
作者 Rutendo Goboza Jackson Githu Njiri James Kuria Kimotho 《Journal of Power and Energy Engineering》 2022年第7期31-55,共25页
Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has ... Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has led to the development of large wind turbines, which result in increased structural loads, therefore, increasing the possibility of early failure due to fatigue load. This paper proposes a proportional integral observer (PI-Observer) based disturbance accommodation controller (DAC) with individual pitch control (IPC) for load mitigation to reduce components’ damage and ensure the wind turbine is operational for the expected lifetime. The results indicate a reduction in blades’ bending moments with a standard deviation of 15.9%, which positively impacts several other wind turbine subsystems. Therefore, the lifetime control strategy demonstrates effective structural load mitigation without compromise on power generation, thus, achieving a nominal lifetime control to inhibit premature failure. 展开更多
关键词 Disturbance Accommodation control Individual pitch control Lifetime control Structural Load Mitigation
下载PDF
Control Scheme of Hybrid Wind-Diesel System with SMES Using NSGA-II
19
作者 Mohammed E. Lotfy Tomonobu Senjyu +2 位作者 Mohamed A. Farahat Amal F. Abdel-Gawad Atsuhi Yona 《Journal of Energy and Power Engineering》 2017年第3期204-213,共10页
Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dyn... Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dynamic performance. Furthermore, to minimize the system oscillations, SMES (super-conducting magnetic energy storage) with first order lead-lag controller is implemented to supply and absorb active power quickly trying to reach power generation/demand balance and thereby control system frequency. Minimization of frequency and wind output power deviations are considered as two objective functions for the PID controller of wind turbine. Also, mitigating frequency and diesel output power deviations are presented as two objective functions of the lead-lag controller of SMES. NSGA-II (modified version of non-dominated sorting genetic algorithm) is used to tune the controllers' parameters to get an optimal response. The effectiveness and robustness of the proposed control technique are investigated under different operating conditions using Matlab environment. The simulation results confirm the ability of the controllers to damp all frequency and output powers fluctuations and enhance the stability and reliability of the hybrid power system. 展开更多
关键词 Wind-diesel system isolated power system energy storage frequency control blade pitch control NSGA-II.
下载PDF
基于模糊神经网络PID的煤矿掘进机俯仰控制研究 被引量:1
20
作者 毛清华 陈彦璋 +3 位作者 马骋 王川伟 张飞 柴建权 《工矿自动化》 CSCD 北大核心 2024年第8期135-143,共9页
目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出... 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。 展开更多
关键词 掘进机俯仰控制 俯仰角 模糊神经网络PID 液压系统 液压缸位移控制 支撑机构
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部