In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independen...In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independent of the ship target size is constructed by combining the shape feature with ship histogram of oriented gradient(S-HOG) feature, and the target can be recognized by Ada Boost classifier. As demonstrated in our experiments, the proposed method with the detection accuracy of over 96% outperforms the state-of-the-art method. efficiency switch and modulation.展开更多
This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effect...This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effectively preserve the edge and detail of the image. And compared with classical methods, bilateral filtering method has a better performance in denosing for the reason that the weight includes the geometric closeness factor and the intensity similarity factor. We combine the geometric closeness factor with the weight of non-local means, and construct a new weight. Experimental results show that the modified algorithm can achieve better performance. And it can protect the image detail and structure information better.展开更多
基金supported by the National Natural Science Foundation of China(No.61401425)
文摘In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independent of the ship target size is constructed by combining the shape feature with ship histogram of oriented gradient(S-HOG) feature, and the target can be recognized by Ada Boost classifier. As demonstrated in our experiments, the proposed method with the detection accuracy of over 96% outperforms the state-of-the-art method. efficiency switch and modulation.
基金supported by the Student’s Platform for Innovation and Entrepreneurship Training Program(No.201510060022)
文摘This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effectively preserve the edge and detail of the image. And compared with classical methods, bilateral filtering method has a better performance in denosing for the reason that the weight includes the geometric closeness factor and the intensity similarity factor. We combine the geometric closeness factor with the weight of non-local means, and construct a new weight. Experimental results show that the modified algorithm can achieve better performance. And it can protect the image detail and structure information better.