Recently, due to the deployment flexibility of unmanned aerial vehicles(UAVs), UAV-assisted mobile relay communication system has been widely used in the maritime communication. However, the performance of UAV-assiste...Recently, due to the deployment flexibility of unmanned aerial vehicles(UAVs), UAV-assisted mobile relay communication system has been widely used in the maritime communication. However, the performance of UAV-assisted mobile relay communication system is limited by the capacity of wireless backhaul link between base station and UAV. In this paper, we consider a caching UAV-assisted decode-and-forward relay communication system in a downlink maritime communication. For the general case with multiple users, the optimal placement of UAV is obtained by solving the average achievable rate maximization problem through the one-dimensional linear search. For a special case with single user, we derive a semi closedform expression of the optimal placement of UAV. Simulation results confirm the accuracy of analytical results and show that the optimal placement of UAV and the average achievable rate significantly depend on the cache capacity at UAV. We also show the difference between the performances of the air-to-ground model and the air-to-sea model.展开更多
The mobile hybrid machining robot has a very bright application prospect in the field of high-efficiency and high-precision machining of large aerospace structures.However,an inappropriate base placement may make the ...The mobile hybrid machining robot has a very bright application prospect in the field of high-efficiency and high-precision machining of large aerospace structures.However,an inappropriate base placement may make the robot encounter a singular configuration,or even fail to complete the entire machining task due to unreachability.In addition to considering the two constraints of reachability and non-singularity,this paper also optimizes the robot base placement with stiffness as the goal to improve the machining quality.First of all,starting from the structure of the robot,the reachability and nonsingularity constraints are transformed into a simple geometric constraint imposed on the base placement:feasible base placement area.Then,genetic algorithm is used to search for the base placement with near optimal stiffness(near optimal base placement for short)in the feasible base placement area.Finally,multiple controlled experiments were carried out by taking the milling of a protuberance on the spacecraft cabin as an example.It is found that the calculated optimal base placement meets all the constraints and that the machining quality was indeed improved.In addition,compared with simple genetic algorithm,it is proved that the feasible base placement area method can shorten the running time of the whole program.展开更多
Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss...Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.展开更多
Road Side Units(RSUs)are the essential component of vehicular communication for the objective of improving safety and mobility in the road transportation.RSUs are generally deployed at the roadside and more specifical...Road Side Units(RSUs)are the essential component of vehicular communication for the objective of improving safety and mobility in the road transportation.RSUs are generally deployed at the roadside and more specifically at the intersections in order to collect traffic information from the vehicles and disseminate alarms and messages in emergency situations to the neighborhood vehicles cooperating with the network.However,the development of a predominant RSUs placement algorithm for ensuring competent communication in VANETs is a challenging issue due to the hindrance of obstacles like water bodies,trees and buildings.In this paper,Ruppert’s Delaunay Triangulation Refinement Scheme(RDTRS)for optimal RSUs placement is proposed for accurately estimating the optimal number of RSUs that has the possibility of enhancing the area of coverage during data communication.This RDTRS is proposed by considering the maximum number of factors such as global coverage,intersection popularity,vehicle density and obstacles present in the map for optimal RSUs placement,which is considered as the core improvement over the existing RSUs optimal placement strategies.It is contributed for deploying requisite RSUs with essential transmission range for maximal coverage in the convex map such that each position of the map could be effectively covered by at least one RSU in the presence of obstacles.The simulation experiments of the proposed RDTRS are conducted with complex road traffic environments.The results of this proposed RDTRS confirmed its predominance in reducing the end-to-end delay by 21.32%,packet loss by 9.38%with improved packet delivery rate of 10.68%,compared to the benchmarked schemes.展开更多
The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations ar...The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.展开更多
This study deals with a robot manipulator for yarn bobbin handling in the cotton yarns lattice distortion modification system.The aim is to achieve an operation of yarn bobbin handling with minimal execution time,ener...This study deals with a robot manipulator for yarn bobbin handling in the cotton yarns lattice distortion modification system.The aim is to achieve an operation of yarn bobbin handling with minimal execution time,energy consumption and jerk in motion together.The placement of the robot,in relation to the yarn bobbin stations,is also optimized in conjunction of trajectory optimization.Three possible techniques for building the handling traj'ectory were considered:the quaternion spherical linear interpolation in Cartesian space,the quintic polynomial spline and quintic B-spline in joint space.The genetic algorithm(GA) was used to optimize the trajectories of the robot,with a penalty function to handle nonlinear constraints associated in the robot motion.Two simulations of the optimal trajectory in joint space and the placement of robot were carried out and the results obtained were presented and discussed.It is concluded that the quintic polynomial spline constructs a better trajectory in joint space and the proper placement of robot makes better performance.展开更多
This paper investigates an unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) network with ultra-reliable and low-latency communications (URLLC), in which a UAV acts as an aerial edge server to collect...This paper investigates an unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) network with ultra-reliable and low-latency communications (URLLC), in which a UAV acts as an aerial edge server to collect information from a set of sensors and send the processed data (e.g., command signals) to the corresponding actuators. In particu?lar, we focus on the round-trip URLLC from the sensors to the UAV and to the actuators in the network. By considering the finite block-length codes, our objective is to minimize the maximum end-to-end packet error rate (PER) of these sensor-actuator pairs, by jointly opti?mizing the UAV's placement location and transmitting power allocation, as well as the us?ers'block-length allocation, subject to the UAV's sum transmitting power constraint and the total block-length constraint. Although the maximum-PER minimization problem is non-convex and difficult to be optimally solved, we obtain a high-quality solution to this problem by using the technique of alternating optimization. Numerical results show that our proposed design achieves significant performance gains over other benchmark schemes without the joint optimization.展开更多
The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testi...The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement i...Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.展开更多
The mathematical model of optimal placement of active members in truss adaptive structures is essentially a nonlinear multi-objective optimization problem with mixed variables. It is usually much difficult and costly ...The mathematical model of optimal placement of active members in truss adaptive structures is essentially a nonlinear multi-objective optimization problem with mixed variables. It is usually much difficult and costly to be solved. In this paper, the optimal location of active members is treated in terms of (0, 1) discrete variables. Structural member sizes, control gains, and (0, 1) placement variables are treated simultaneously as design variables. Then, a succinct and reasonable compromise scalar model, which is transformed from original multi-objective optimization, is established, in which the (0, 1) discrete variables are converted into an equality constraint. Secondly, by penalty function approach, the subsequent scalar mixed variable compromise model can be formulated equivalently as a sequence of continuous variable problems. Thirdly, for each continuous problem in the sequence, by choosing intermediate design variables and temporary critical constraints, the approximation concept is carried out to generate a sequence of explicit approximate problems which enhance the quality of the approximate design problems. Considering the proposed method, a FORTRAN program OPAMTAS2.0 for optimal placement of active members in truss adaptive structures is developed, which is used by the constrained variable metric method with the watchdog technique (CVMW method). Finally, a typical 18 bar truss adaptive structure as test numerical examples is presented to illustrate that the design methodology set forth is simple, feasible, efficient and stable. The established scalar mixed variable compromise model that can avoid the ill-conditioned possibility caused by the different orders of magnitude of various objective functions in optimization process, therefore, it enables the optimization algorithm to have a good stability. On the other hand, the proposed novel optimization technique can make both discrete and continuous variables be optimized simultaneously.展开更多
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result...The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.展开更多
A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures.The study includes development of a statistical criterion,formulati...A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures.The study includes development of a statistical criterion,formulation of a general optimization problem and establishment of a solution procedure.Numerical analysis of the seismic response in time-history of controlled structures is used to verify the proposed method for optimal device application and to demonstrate the effectiveness of seismic response control with optimal device location.This study shows that the proposed method for the optimal device application is simple and general,and that the optimally applied dampers and actuators are very efficient for seismic response reduction.展开更多
Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems.But such issues can be resolved through effective usage of networking reconfiguration that has a combinat...Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems.But such issues can be resolved through effective usage of networking reconfiguration that has a combination of Distributed Generation(DG)units from distribution networks.In this point of view,optimal placement and sizing of DGs are effective ways to boost the performance of power systems.The optimum allocation of DGs resolves various problems namely,power loss,voltage profile improvement,enhanced reliability,system stability,and performance.Several research works have been conducted to address the distribution system problems in terms of power loss,energy loss,voltage profile,and voltage stability depending upon optimal DG distribution.With this motivation,the current study designs a Chaotic Artificial Flora Optimization based on Optimal Placement and Sizing of DGs(CAFO-OPSDG)to enhance the voltage profiles and mitigate the power loss.Besides,the CAFO algorithm is derived from the incorporation of chaos theory concept into conventional artificial flora optimization AFO algorithm with an aim to enhance the global optimization abilities.The fitness function of CAFO-OPSDG algorithm involves voltage regulation,power loss minimization,and penalty cost.To consider the actual power system scenario,the penalty factor acts as an important element not only to minimize the total power loss but to increase the voltage profiles as well.The experimental validation of the CAFO-OPSDG algorithm was conducted against IEEE 33 Bus system and IEEE 69 Bus system.The outcomes were examined under various test scenarios.The results of the experiment established that the presented CAFO-OPSDG model is effective in terms of reducing the power loss and voltage deviation and boost-up the voltage profile for the specified system.展开更多
A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing...A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.展开更多
Normally, the power system observation is carried out for the optimal PMUs placement with minimum use of unit in the region of the Smart power grid system. By advanced tool, the process of protection and management of...Normally, the power system observation is carried out for the optimal PMUs placement with minimum use of unit in the region of the Smart power grid system. By advanced tool, the process of protection and management of the power system is considered with the measurement of time-synchronized of the voltage and current. In order to have an efficient placement solution for the issue, a novel method is needed with the optimal approach. For complete power network observability of PMU optimal placement a new method is implemented. However, the process of placement and connection of the buses is considered at various places with the same cost of installation. GA based Enhanced Harmony and Binary Search Algorithm (GA-EHBSA) is proposed and utilized with the improvement to have least PMU placement and better optimization approach for finding the optimal location. To evaluate the optimal placement of PMUs the proposed approach is implemented in the standard test systems of IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, IEEE 39-bus and IEEE 57-bus. The simulation results are evaluated and compared with existing algorithm to show the efficient process of optimal PMUs placement with better optimization, minimum cost and redundancy than the existing.展开更多
Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to sim...Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells.展开更多
This study proposes a framework to evaluate the performance of borehole arrangements for the design of rectangular shallow foundation systems under spatially variable soil conditions. Performance measures are introduc...This study proposes a framework to evaluate the performance of borehole arrangements for the design of rectangular shallow foundation systems under spatially variable soil conditions. Performance measures are introduced to quantify, for a fixed foundation layout and given soil sounding locations, the variability level of the foundation system bearing capacities in terms of their mean values and standard deviations. To estimate these measures, the recently proposed random failure mechanism method (RFMM) has been adopted and extended to consider any arrangement of rectangular foundations and boreholes. Hence, three-dimensional bearing capacity estimation under spatially variable soil can be efficiently performed. Several numerical examples are presented to illustrate the applicability of the proposed framework, including diverse foundation arrangements and different soil correlation structures. Overall, the proposed framework represents a potentially useful tool to support the design of geotechnical site investigation programs, especially in situations where very limited prior knowledge about the soil properties is available.展开更多
Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a pie...Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.展开更多
This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of t...This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units.展开更多
基金supported in part by the Natural Science Foundation of China under Grant U1805262,61671251,61871446,61701118,61871131,and 61404130218the Natural Science Foundation of Fujian Province under Grant 2018J05101。
文摘Recently, due to the deployment flexibility of unmanned aerial vehicles(UAVs), UAV-assisted mobile relay communication system has been widely used in the maritime communication. However, the performance of UAV-assisted mobile relay communication system is limited by the capacity of wireless backhaul link between base station and UAV. In this paper, we consider a caching UAV-assisted decode-and-forward relay communication system in a downlink maritime communication. For the general case with multiple users, the optimal placement of UAV is obtained by solving the average achievable rate maximization problem through the one-dimensional linear search. For a special case with single user, we derive a semi closedform expression of the optimal placement of UAV. Simulation results confirm the accuracy of analytical results and show that the optimal placement of UAV and the average achievable rate significantly depend on the cache capacity at UAV. We also show the difference between the performances of the air-to-ground model and the air-to-sea model.
基金supported by National Natural Science Foundation of China(Nos.91948301,52175025 and 51721003).
文摘The mobile hybrid machining robot has a very bright application prospect in the field of high-efficiency and high-precision machining of large aerospace structures.However,an inappropriate base placement may make the robot encounter a singular configuration,or even fail to complete the entire machining task due to unreachability.In addition to considering the two constraints of reachability and non-singularity,this paper also optimizes the robot base placement with stiffness as the goal to improve the machining quality.First of all,starting from the structure of the robot,the reachability and nonsingularity constraints are transformed into a simple geometric constraint imposed on the base placement:feasible base placement area.Then,genetic algorithm is used to search for the base placement with near optimal stiffness(near optimal base placement for short)in the feasible base placement area.Finally,multiple controlled experiments were carried out by taking the milling of a protuberance on the spacecraft cabin as an example.It is found that the calculated optimal base placement meets all the constraints and that the machining quality was indeed improved.In addition,compared with simple genetic algorithm,it is proved that the feasible base placement area method can shorten the running time of the whole program.
基金supported by the National Natural Science Foundation of China (Grant No. 10472006)
文摘Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.
文摘Road Side Units(RSUs)are the essential component of vehicular communication for the objective of improving safety and mobility in the road transportation.RSUs are generally deployed at the roadside and more specifically at the intersections in order to collect traffic information from the vehicles and disseminate alarms and messages in emergency situations to the neighborhood vehicles cooperating with the network.However,the development of a predominant RSUs placement algorithm for ensuring competent communication in VANETs is a challenging issue due to the hindrance of obstacles like water bodies,trees and buildings.In this paper,Ruppert’s Delaunay Triangulation Refinement Scheme(RDTRS)for optimal RSUs placement is proposed for accurately estimating the optimal number of RSUs that has the possibility of enhancing the area of coverage during data communication.This RDTRS is proposed by considering the maximum number of factors such as global coverage,intersection popularity,vehicle density and obstacles present in the map for optimal RSUs placement,which is considered as the core improvement over the existing RSUs optimal placement strategies.It is contributed for deploying requisite RSUs with essential transmission range for maximal coverage in the convex map such that each position of the map could be effectively covered by at least one RSU in the presence of obstacles.The simulation experiments of the proposed RDTRS are conducted with complex road traffic environments.The results of this proposed RDTRS confirmed its predominance in reducing the end-to-end delay by 21.32%,packet loss by 9.38%with improved packet delivery rate of 10.68%,compared to the benchmarked schemes.
文摘The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.
基金National Key Technology Support Program,China(No.2012BAF13B03)Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT1220)
文摘This study deals with a robot manipulator for yarn bobbin handling in the cotton yarns lattice distortion modification system.The aim is to achieve an operation of yarn bobbin handling with minimal execution time,energy consumption and jerk in motion together.The placement of the robot,in relation to the yarn bobbin stations,is also optimized in conjunction of trajectory optimization.Three possible techniques for building the handling traj'ectory were considered:the quaternion spherical linear interpolation in Cartesian space,the quintic polynomial spline and quintic B-spline in joint space.The genetic algorithm(GA) was used to optimize the trajectories of the robot,with a penalty function to handle nonlinear constraints associated in the robot motion.Two simulations of the optimal trajectory in joint space and the placement of robot were carried out and the results obtained were presented and discussed.It is concluded that the quintic polynomial spline constructs a better trajectory in joint space and the proper placement of robot makes better performance.
基金This work was supported in part by the Key Area R&D Program of Guang⁃dong Province with grant No.2018B030338001the National Key R&D Program of China with grant No.2018YFB1800800+3 种基金Natural Science Foundation of China with grant Nos.61871137 and 61629101the Guangdong Province Basic Research Program(Natural Science)with grant No.2018KZDXM028Guangdong Zhujiang Project No.2017ZT07X152Shenzhen Key Lab Fund No.ZDSYS201707251409055.
文摘This paper investigates an unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) network with ultra-reliable and low-latency communications (URLLC), in which a UAV acts as an aerial edge server to collect information from a set of sensors and send the processed data (e.g., command signals) to the corresponding actuators. In particu?lar, we focus on the round-trip URLLC from the sensors to the UAV and to the actuators in the network. By considering the finite block-length codes, our objective is to minimize the maximum end-to-end packet error rate (PER) of these sensor-actuator pairs, by jointly opti?mizing the UAV's placement location and transmitting power allocation, as well as the us?ers'block-length allocation, subject to the UAV's sum transmitting power constraint and the total block-length constraint. Although the maximum-PER minimization problem is non-convex and difficult to be optimally solved, we obtain a high-quality solution to this problem by using the technique of alternating optimization. Numerical results show that our proposed design achieves significant performance gains over other benchmark schemes without the joint optimization.
基金supported by the National Natural Science Foundation of China (Grant No. 50909072)the New Teachers' Fund for Doctor Station, the Ministry of Education of China (Grant No. 20090032120082)the Communication Research Item for the West Area, the Ministry of Communications of China (Grant No. 2009328000084)
文摘The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
基金The Hong Kong Polytechnic University through the group project "Fundamentals of Earthquake Engineering for Hong Kong"(4-ZZCD)the collaborative research project with Beijing University of Technology(4-ZZGD)
文摘Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.
基金supported by National Natural Science Foundation of China(Grant No.10472007)
文摘The mathematical model of optimal placement of active members in truss adaptive structures is essentially a nonlinear multi-objective optimization problem with mixed variables. It is usually much difficult and costly to be solved. In this paper, the optimal location of active members is treated in terms of (0, 1) discrete variables. Structural member sizes, control gains, and (0, 1) placement variables are treated simultaneously as design variables. Then, a succinct and reasonable compromise scalar model, which is transformed from original multi-objective optimization, is established, in which the (0, 1) discrete variables are converted into an equality constraint. Secondly, by penalty function approach, the subsequent scalar mixed variable compromise model can be formulated equivalently as a sequence of continuous variable problems. Thirdly, for each continuous problem in the sequence, by choosing intermediate design variables and temporary critical constraints, the approximation concept is carried out to generate a sequence of explicit approximate problems which enhance the quality of the approximate design problems. Considering the proposed method, a FORTRAN program OPAMTAS2.0 for optimal placement of active members in truss adaptive structures is developed, which is used by the constrained variable metric method with the watchdog technique (CVMW method). Finally, a typical 18 bar truss adaptive structure as test numerical examples is presented to illustrate that the design methodology set forth is simple, feasible, efficient and stable. The established scalar mixed variable compromise model that can avoid the ill-conditioned possibility caused by the different orders of magnitude of various objective functions in optimization process, therefore, it enables the optimization algorithm to have a good stability. On the other hand, the proposed novel optimization technique can make both discrete and continuous variables be optimized simultaneously.
基金Funded by the Special Found of the Ministry of Education for Doctor Station Subject(No.20115522110001)
文摘The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.
基金the National Science Foundation under grant CMS 9903136
文摘A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures.The study includes development of a statistical criterion,formulation of a general optimization problem and establishment of a solution procedure.Numerical analysis of the seismic response in time-history of controlled structures is used to verify the proposed method for optimal device application and to demonstrate the effectiveness of seismic response control with optimal device location.This study shows that the proposed method for the optimal device application is simple and general,and that the optimally applied dampers and actuators are very efficient for seismic response reduction.
文摘Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems.But such issues can be resolved through effective usage of networking reconfiguration that has a combination of Distributed Generation(DG)units from distribution networks.In this point of view,optimal placement and sizing of DGs are effective ways to boost the performance of power systems.The optimum allocation of DGs resolves various problems namely,power loss,voltage profile improvement,enhanced reliability,system stability,and performance.Several research works have been conducted to address the distribution system problems in terms of power loss,energy loss,voltage profile,and voltage stability depending upon optimal DG distribution.With this motivation,the current study designs a Chaotic Artificial Flora Optimization based on Optimal Placement and Sizing of DGs(CAFO-OPSDG)to enhance the voltage profiles and mitigate the power loss.Besides,the CAFO algorithm is derived from the incorporation of chaos theory concept into conventional artificial flora optimization AFO algorithm with an aim to enhance the global optimization abilities.The fitness function of CAFO-OPSDG algorithm involves voltage regulation,power loss minimization,and penalty cost.To consider the actual power system scenario,the penalty factor acts as an important element not only to minimize the total power loss but to increase the voltage profiles as well.The experimental validation of the CAFO-OPSDG algorithm was conducted against IEEE 33 Bus system and IEEE 69 Bus system.The outcomes were examined under various test scenarios.The results of the experiment established that the presented CAFO-OPSDG model is effective in terms of reducing the power loss and voltage deviation and boost-up the voltage profile for the specified system.
基金Project(2011CB013804)supported by the National Basic Research Program of China
文摘A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.
文摘Normally, the power system observation is carried out for the optimal PMUs placement with minimum use of unit in the region of the Smart power grid system. By advanced tool, the process of protection and management of the power system is considered with the measurement of time-synchronized of the voltage and current. In order to have an efficient placement solution for the issue, a novel method is needed with the optimal approach. For complete power network observability of PMU optimal placement a new method is implemented. However, the process of placement and connection of the buses is considered at various places with the same cost of installation. GA based Enhanced Harmony and Binary Search Algorithm (GA-EHBSA) is proposed and utilized with the improvement to have least PMU placement and better optimization approach for finding the optimal location. To evaluate the optimal placement of PMUs the proposed approach is implemented in the standard test systems of IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, IEEE 39-bus and IEEE 57-bus. The simulation results are evaluated and compared with existing algorithm to show the efficient process of optimal PMUs placement with better optimization, minimum cost and redundancy than the existing.
文摘Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells.
基金support of the Polish National Agency for Academic Exchange under the Bekker NAWA Programme(Grant No.BPN/BEK/2021/1/00068)which founded the postdoctoral fellowship at the Institute of Risk and Reliability at Leibniz University Hannover.The first author would also like to thank to Prof.Wengang Zhang and Chongzhi Wu(School of Civil Engineering,Chongqing University)for inspiring discussions initi-ated by High-end Foreign Expert Introduction program(Grant No.DL2021165001L)by the Ministry of Science and Technology(MOST),ChinaThe second author would like to thank the support from ANID(National Agency for Research and Development,Chile)and DAAD(German Academic Exchange Service,Germany)under CONICYT-PFCHA/Doctorado Acuerdo Bilateral DAAD Becas Chile/2018-62180007.The third author gratefully acknowledges the support by ANID under its program FONDECYT(Grant No.1200087).
文摘This study proposes a framework to evaluate the performance of borehole arrangements for the design of rectangular shallow foundation systems under spatially variable soil conditions. Performance measures are introduced to quantify, for a fixed foundation layout and given soil sounding locations, the variability level of the foundation system bearing capacities in terms of their mean values and standard deviations. To estimate these measures, the recently proposed random failure mechanism method (RFMM) has been adopted and extended to consider any arrangement of rectangular foundations and boreholes. Hence, three-dimensional bearing capacity estimation under spatially variable soil can be efficiently performed. Several numerical examples are presented to illustrate the applicability of the proposed framework, including diverse foundation arrangements and different soil correlation structures. Overall, the proposed framework represents a potentially useful tool to support the design of geotechnical site investigation programs, especially in situations where very limited prior knowledge about the soil properties is available.
文摘Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.
基金Project supported by the Science&Technology Innovation Team of Outstanding Youth of Hubei Provincial Universities(No.T201319)the Scientific Research Foundation for Talents of China Three Gorges University(No.0620130076)
文摘This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units.