期刊文献+
共找到17,127篇文章
< 1 2 250 >
每页显示 20 50 100
Placenta-derived mesenchymal stem cells attenuate secondary brain injury after controlled cortical impact in rats by inhibiting matrix metalloproteinases
1
作者 PING YANG YUANXIANG LAN +2 位作者 ZHONG ZENG YAN WANG HECHUN XIA 《BIOCELL》 SCIE 2024年第1期149-162,共14页
Background:As a form of biological therapy,placenta-derived mesenchymal stem cells(PDMSCs)exhibit considerable promise in addressing the complex pathological processes of traumaticbrain injury(TBI)due to their multi-t... Background:As a form of biological therapy,placenta-derived mesenchymal stem cells(PDMSCs)exhibit considerable promise in addressing the complex pathological processes of traumaticbrain injury(TBI)due to their multi-target and multi-pathway mode of action.Material&Methods:This study investigates the protective mechanisms and benefits of PDMSCs in mitigating the effects of controlled cortical impact(CCI)in rats and glutamate-induced oxidative stress injury in HT22 cells in vitro.Our primary objective is to provide evidence supporting the clinical application of PDMSCs.Results:In the in vivo arm of our investigation,we observed a swift elevation of matrix metalloproteinase-9(MMP-9)in the proximal cortex of injured brain tissues after CCI.PDMSCs,distinguished by their heightened expression of metalloproteinase tissue inhibitors-1 and-2(TIMP-1 and TIMP-2):were intravenously administered via the caudal vein.This intervention yielded significant reductions in the permeability of the blood-brain barrier(BBB):the extent of brain edema,the levels of inflammatory cytokines IL-1βand TNF-αin damaged brain tissue,and the activation status of microglia in CCI-afflicted rats.In the realm of in vitro experiments,PDMSC-conditioned media demonstrated substantial reductions in mortality rates and cleaved caspase-3 levels in glutamate-induced HT22 cells compared with conventional media.Notably,this advantage was negated upon the introduction of neutralizing antibodies targeting TIMP-1 and TIMP-2.Conclusion:Collectively,our findings underscore the potential of PDMSCs in alleviating oxidative stress injury and secondary brain injury in the pathological process of TBI. 展开更多
关键词 Traumatic brain injury mesenchymal stem cells Oxidative stress Matrix metalloproteinases
下载PDF
Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture 被引量:2
2
作者 Nailong Yang Hongyan Zhang Xiaojuan Sun Lili Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第1期23-28,共6页
We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation... We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation, which does not represent a proper cell differentiation process. The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system, hPMSCs were isolated and purified from human full-term placenta using collagenase digestion. Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system, hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament. After 96 hours, hPMSCs expressed neuron-specific enolase, which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs. 展开更多
关键词 human placenta-derived mesenchymal stem cells TRANSWELL CO-CULTURE DIFFERENTIATION neural cells
下载PDF
Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner
3
作者 Nailong Yang Lili Xu +1 位作者 Peng Lin Jing Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期756-760,共5页
Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from hum... Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and 5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and immunofluorescence staining showed neuron specific enolase positive cells were present in each group except the control group. A greater number of neuron specific enolase positive cells were observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups except the control group and Nissl body numbers were greatest in human placenta-derived mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal stem cells into neuronal-like cells in a time-and concentration-dependent manner. 展开更多
关键词 uric acid human placenta-derived mesenchymal stem cells DIFFERENTIATION neural cells
下载PDF
Identification of tumorigenic risk genes in human placenta-derived mesenchymal stem cells treated with 3-methylcholanthrene
4
作者 YUANYUAN JIA XIAONA MA +4 位作者 XIURUI YAN JING XUE TINGTING YANG XUEYUN LIANG XIAOMING LIU 《BIOCELL》 SCIE 2022年第2期479-493,共15页
Mesenchymal stem cells(MSCs)capable of tumour topotaxis have been served as cellular vehicles to deliver anti-tumour agents.As cellular components of the tumour microenvironment,MSCs also affect tumour progression.How... Mesenchymal stem cells(MSCs)capable of tumour topotaxis have been served as cellular vehicles to deliver anti-tumour agents.As cellular components of the tumour microenvironment,MSCs also affect tumour progression.However,the tumour transformation-related genes of MSCs remain unclear since either tumorigenic or tumour suppressor effects within these cells have been researched.Hence,we aimed to identify potential biomarkers indicative of tumorigenic risk by RNA-seq analysis of human placenta tissue-derived MSCs(hPTMSCs)exposed to the carcinogenic agent,3-methylcholanthrene(3-MC).Twenty-nine tumour transformation-related genes and three pluripotency-related genes were appraised as differentially expressed genes(DEGs)in hPTMSCs.Overexpression of sfrp1 led to reduced cell viability,migration,and colony formation in A549.In contrast,the overexpression of ptgs2 exerted the opposite effect.These results indicate that A549 cells with high ptgs2 expression but low sfrp1 expression may have a more potential tumorigenic capacity.Taken together,this study suggests that ptgs2 and sfrp1 may be tumorigenic risk genes. 展开更多
关键词 Human placenta-derived mesenchymal stem cells Transcriptional profile Tumorigenicity
下载PDF
Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury:state of the art and future perspectives
5
作者 Fatima Aldali Chunchu Deng +1 位作者 Mingbo Nie Hong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第11期3151-3171,共21页
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro... “Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions. 展开更多
关键词 clinical trials EXOSOME extracellular vesicles mesenchymal stem cells nerve regeneration peripheral nerve injury pre-clinical experiments
下载PDF
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
6
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury 被引量:13
7
作者 Zhi Li Wei Zhao +3 位作者 Wei Liu Ye Zhou Jingqiao Jia Lifeng Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2197-2204,共8页
Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta... Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury. 展开更多
关键词 nerve regeneration stem cells placenta-derived mesenchymal stem cells spinal cord injury neural stern cells nerve-like cells motor function sensory function neural regeneration
下载PDF
Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells(HUVECs) after X-ray radiation 被引量:2
8
作者 Shu CHEN Qian WANG +5 位作者 Bing HAN Jia WU Ding-kun LIU Jun-dong ZOU Mi WANG Zhi-hui LIU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2020年第4期327-340,共14页
Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angioge... Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation. 展开更多
关键词 LEPTIN ANGIOGENESIS Pro-inflammatory cytokines X-ray radiation Human placenta-derived mesenchymal stem cells(HPMSCs) Human umbilical vein endothelial cells(HUVECs)
原文传递
The emerging role of mesenchymal stem cell-derived extracellular vesicles to ameliorate hippocampal NLRP3 inflammation induced by binge-like ethanol treatment in adolescence
9
作者 Susana Mellado María JoséMorillo-Bargues +4 位作者 Carla Perpiñá-Clérigues Francisco García-García Victoria Moreno-Manzano Consuelo Guerri María Pascual 《Neural Regeneration Research》 SCIE CAS 2025年第4期1153-1163,共11页
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ... Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence. 展开更多
关键词 ADOLESCENCE binge-like ethanol treatment extracellular vesicles hippocampus mesenchymal stem cells neuroinflammation NOD- LRR-and pyrin domain-containing protein 3(NLRP3)
下载PDF
Advances in the treatment of autism spectrum disorder:Wharton jelly mesenchymal stem cell transplantation
10
作者 Serdar Kabatas ErdinçCivelek +3 位作者 Eyüp Can Savrunlu Umut Karaaslan Özlem Yıldız Erdal Karaöz 《World Journal of Methodology》 2025年第1期72-79,共8页
BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder with multifaceted origins.In recent studies,neuroinflammation and immune dysregulation have come to the forefront in its pathogenesis.Th... BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental disorder with multifaceted origins.In recent studies,neuroinflammation and immune dysregulation have come to the forefront in its pathogenesis.There are studies suggesting that stem cell therapy may be effective in the treatment of ASD.AIM To evolve the landscape of ASD treatment,focusing on the potential benefits and safety of stem cell transplantation.METHODS A detailed case report is presented,displaying the positive outcomes observed in a child who underwent intrathecal and intravenous Wharton’s jelly-derived mesenchymal stem cells(WJ-MSCs)transplantation combined with neurorehabilitation.RESULTS The study demonstrates a significant improvement in the child’s functional outcomes(Childhood Autism Rating Scale,Denver 2 Developmental Screening Test),especially in language and gross motor skills.No serious side effects were encountered during the 2-year follow-up.CONCLUSION The findings support the safety and effectiveness of WJ-MSC transplantation in managing ASD. 展开更多
关键词 Autism spectrum disorder NEUROREHABILITATION stem cell transplantation Wharton jelly mesenchymal stem cells INFLAMMATION
下载PDF
Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response 被引量:10
11
作者 Hongfang Ding Hui Zhang +6 位作者 Huifang Ding Dong Li Xinhao Yi Xiaoxu Ma Ruijuan Li Mei Huang Xiuli Ju 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2017年第8期693-701,共9页
Hypoxic-ischemic brain damage(HIBD)is a common cause of infant death.The purpose of our research was to explore the immunoregulatory mechanism of placenta-derived mesenchymal stem cells(PD-MSCs)in HIBD treatment.Seven... Hypoxic-ischemic brain damage(HIBD)is a common cause of infant death.The purpose of our research was to explore the immunoregulatory mechanism of placenta-derived mesenchymal stem cells(PD-MSCs)in HIBD treatment.Seven-day-old rat pups were randomly divided into HIBD,PD-MSC,fibroblast,and control groups.Forty-eight hours after HIBD induction,cells at a density of 5×104 cells/10µl were injected into the cerebral tissue in the PD-MSC and fibroblast groups.The TNF-α,interleukin-17(IL-17),interferon-γ(IFN-γ),and IL-10 levels were detected through quantitative real-time polymerase chain reaction(RT-PCR)and enzyme-linked immunosorbent assay(ELISA).Regulatory T cell(Tregs)populations were detected through flow cytometry,and forkhead box P3(Foxp3)was measured through western blot analysis.Behavioral tests and gross and pathological examinations showed that PD-MSC treatment exerted significantly stronger neuroprotective effects than the other treatments.The expression levels of pro-inflammatory cytokines were substantially upregulated after HI injury.Compared with fibroblast treatment,PD-MSC treatment inhibited the production of pro-inflammatory cytokines and increased the production of IL-10 in the ischemic hemispheres and peripheral blood serum(all P<0.01).Flow cytometry results showed a notable increase in the number of Tregs within the spleen of the HIBD group.Moreover,the number of Tregs and the Foxp3 expression levels were higher in the PD-MSC treatment group than in the HIBD and fibroblast groups(all P<0.01).Our research suggests that the mechanism of PD-MSC treatment for HIBD partially involves inflammatory response suppression. 展开更多
关键词 CYTOKINE HYPOXIA-ISCHEMIA mesenchymal stem cell neonatal rat regulatory T cell
原文传递
Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease 被引量:4
12
作者 Yan Jiang Narazah Mohd Yusoff +2 位作者 Jiang Du Emmanuel Jairaj Moses Jun-Tang Lin 《World Journal of Stem Cells》 SCIE 2024年第7期760-772,共13页
Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially pre... Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD. 展开更多
关键词 Non-alcoholic induced fatty liver disease mesenchymal stem cells Lipid accumulation INFLAMMATION Oxidative stress Endoplasmic reticulum stress FIBROSIS
下载PDF
Multiple pretreatments can effectively improve the functionality of mesenchymal stem cells 被引量:2
13
作者 Xin-Xing Wan Xi-Min Hu Kun Xiong 《World Journal of Stem Cells》 SCIE 2024年第2期58-63,共6页
In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cell... In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole. 展开更多
关键词 mesenchymal stem cells Inflammatory factor HYPOXIA PRETREATMENT
下载PDF
Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study 被引量:2
14
作者 ErdinçCivelek Serdar Kabatas +4 位作者 Eyüp Can Savrunlu Furkan Diren Necati Kaplan Demet Ofluoğlu Erdal Karaöz 《World Journal of Stem Cells》 SCIE 2024年第1期19-32,共14页
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist... BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress. 展开更多
关键词 mesenchymal stem cell EXOSOMES Radial nerve Sural nerve
下载PDF
How mesenchymal stem cells transform into adipocytes:Overview of the current understanding of adipogenic differentiation 被引量:2
15
作者 Shan-Shan Liu Xiang Fang +5 位作者 Xin Wen Ji-Shan Liu Miribangvl Alip Tian Sun Yuan-Yuan Wang Hong-Wei Chen 《World Journal of Stem Cells》 SCIE 2024年第3期245-256,共12页
Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two s... Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes. 展开更多
关键词 mesenchymal stem cell Adipogenic differentiation Signaling pathway Noncoding RNA Epigenetic regulation
下载PDF
Therapeutic effect of placenta-derived mesenchymal stem cells on hypoxic-ischemic brain damage in rats 被引量:5
16
作者 Hong-Fang Ding Hui Zhang +5 位作者 Hui-Fang Ding Dong Li Xin-Hao Yi Xin-Yi Gao Wei-Wei Mou Xiu-Li Ju 《World Journal of Pediatrics》 SCIE CSCD 2015年第1期74-82,共9页
Background:Oxidative stress is involved in the development of hypoxic-ischemic brain damage(HIBD).In this study,we investigated the therapeutic efcts of placenta-derived mesenchymal stem cells(PD-MSCs)and explored the... Background:Oxidative stress is involved in the development of hypoxic-ischemic brain damage(HIBD).In this study,we investigated the therapeutic efcts of placenta-derived mesenchymal stem cells(PD-MSCs)and explored the N F-E2-related factor-2/heme oxygenase-1(Nrf2/HO-1)signaling pathway in treating HIBD.Methods:P7 rats were subjected to hypoxic-ischemic brain injury and randomly divided into four groups(control,HIBD,HIBD+PD-MSCs,and HIBD+fbroblasts).Forty-eight hours after the induction of HIBD,5×10^(5)of PD-MSCs were injected into cerebral tissue in the HIBD+PD-MSCs group,while the same dose of fibroblas ts were injected in the HIBD+fibroblasts group.Morris Water Maze,gross and pathological changes were tested at P28.The level of malondialdehyde(MDA)was detected in rats'hippocampus.RT-PCR and western blot analysis were used to evaluate the changes of Nrf2/HO-1.Results:The HIBD group showed significantly longer escape latency and a lower frequency of original platform crossing in the Morris Water M laze compared with the control group.Rats receiving PD MSCs showed significant improvement of HIBD.The pathological changes were evident after HIBD,but ameliorated in the PD-MSCs group.Compared with the control group,HO-1 and Nrf2 were up-regulated at gene and protein levels in the HI brain,beginning at 6 hours and peaking at 48 hours(P<0.05).The expression of HO-1 and Nrf2 in the PD-MSCs treatment group was more pronounced than in the HBD group(P<0.01).PD MSCs also decreased MDA production in the brain tissue.Conclusion:These results demonstrate that PD-MSCs have neuroprotective effect during the treatment of HIBD and that the mechanism may be partly due to alleviating oxidative stress. 展开更多
关键词 HYPOXIA-ISCHEMIA mesenchymal stem cells neonatal rat oxidative stress
原文传递
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization 被引量:1
17
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Mesenchymal stem cells’“garbage bags”at work:Treating radial nerve injury with mesenchymal stem cell-derived exosomes 被引量:1
18
作者 Mazhar Mushtaq Doaa Hussein Zineldeen +1 位作者 Muhammad Abdul Mateen Khawaja Husnain Haider 《World Journal of Stem Cells》 SCIE 2024年第5期467-478,共12页
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul... Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration. 展开更多
关键词 EXOSOME mesenchymal stem cells Nerve injury stem cells SECRETOME Regeneration
下载PDF
Wharton’s jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury 被引量:1
19
作者 Prashasti Sharma Dharmendra Kumar Maurya 《World Journal of Stem Cells》 SCIE 2024年第7期742-759,共18页
Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve... Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled. 展开更多
关键词 stem cells Wharton’s jelly mesenchymal stem cells RADIOTHERAPY XEROSTOMIA Lung fibrosis
下载PDF
Establishing delivery route-dependent safety and efficacy of living biodrug mesenchymal stem cells in heart failure patients 被引量:1
20
作者 Muhammad Candragupta Jihwaprani Idris Sula +1 位作者 Mohamed Ahmed Charbat Khawaja Husnain Haider 《World Journal of Cardiology》 2024年第6期339-354,共16页
BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,mainta... BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,maintaining these properties unchanged and are retained at the injury site to participate in the repair process.Route of delivery(RoD)remains one of the critical determinants of safety and efficacy.This study elucidates the safety and effectiveness of different RoDs of MSC treatment in heart failure(HF)based on phase II randomized clinical trials(RCTs).We hypothesize that the RoD modulates the safety and efficacy of MSCbased therapy and determines the outcome of the intervention.AIM To investigate the effect of RoD of MSCs on safety and efficacy in HF patients.METHODS RCTs were retrieved from six databases.Safety endpoints included mortality and serious adverse events(SAEs),while efficacy outcomes encompassed changes in left ventricular ejection fraction(LVEF),6-minute walk distance(6MWD),and pro-B-type natriuretic peptide(pro-BNP).Subgroup analyses on RoD were performed for all study endpoints.RESULTS Twelve RCTs were included.Overall,MSC therapy demonstrated a significant decrease in mortality[relative risk(RR):0.55,95%confidence interval(95%CI):0.33-0.92,P=0.02]compared to control,while SAE outcomes showed no significant difference(RR:0.84,95%CI:0.66-1.05,P=0.11).RoD subgroup analysis revealed a significant difference in SAE among the transendocardial(TESI)injection subgroup(RR=0.71,95%CI:0.54-0.95,P=0.04).The pooled weighted mean difference(WMD)demonstrated an overall significant improvement of LVEF by 2.44%(WMD:2.44%,95%CI:0.80-4.29,P value≤0.001),with only intracoronary(IC)subgroup showing significant improvement(WMD:7.26%,95%CI:5.61-8.92,P≤0.001).Furthermore,the IC delivery route significantly improved 6MWD by 115 m(WMD=114.99 m,95%CI:91.48-138.50),respectively.In biochemical efficacy outcomes,only the IC subgroup showed a significant reduction in pro-BNP by-860.64 pg/mL(WMD:-860.64 pg/Ml,95%CI:-944.02 to-777.26,P=0.001).CONCLUSION Our study concluded that all delivery methods of MSC-based therapy are safe.Despite the overall benefits in efficacy,the TESI and IC routes provided better outcomes than other methods.Larger-scale trials are warranted before implementing MSC-based therapy in routine clinical practice. 展开更多
关键词 Clinical trial Heart failure mesenchymal stem cells Living biodrug META-ANALYSIS stem cells Systematic review
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部