Statistical experimental designs were used to optimize the process of phenol degradation by Candida tropicalis Z-04, isolated from phenol-degrading aerobic granules. The most important factors influencing phenol degra...Statistical experimental designs were used to optimize the process of phenol degradation by Candida tropicalis Z-04, isolated from phenol-degrading aerobic granules. The most important factors influencing phenol degradation (p 〈 0.05), as identified by a two-level Plackett-Burman design with 11 variables, were yeast extract, phenol, inoculum size, and temperature. Steepest ascent method was undertaken to determine the optimal regions of these four significant factors. Central composite design (CCD) and response surface analysis were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum phenol degradation. The analysis results indicated that interactions between yeast extract and temperature, phenol and temperature, inocuhim size and temperature affected the response variable (phenol degradation) significantly. The predicted results showed that the maximum removal efficiency of phenol (99.10%) could be obtained under the optimum conditions of yeast extract 0.41 g/L, phenol 1.03 g/L, inoculum size 1.43% (V/V) and temperature 30.04℃. These predicted values were further verified by validation experiments. The excellent correlation between predicted and experimental values confirmed the validity and practicability of this statistical optimum strategy. This study indicated the excellent ability of C. tropicalis Z-04 in degrading high-strength phenol. Optimal conditions obtained in this experiment laid a solid foundation for further use of this microorganism in the treatment of highstrength phenol effluents.展开更多
Lipase production by Candida rugosa was carried out in submerged fermentation.Plackett-Burman statisticalexperimental design was applied to evaluate the fermentation medium components.The effect of twelve medium compo...Lipase production by Candida rugosa was carried out in submerged fermentation.Plackett-Burman statisticalexperimental design was applied to evaluate the fermentation medium components.The effect of twelve medium components was studied in sixteen experimental trials.Glucose,olive oil,peptone and FeCl3·6H2O were found to have more significance on lipase production by Candida rugosa.Maximum lipase activity of 3.8 u mL-1 was obtained at 50h of fermentation period.The fermentation was carried out at optimized temperature of 3℃,initial pH of 6.8 and shaking speed of 120 r/min.Unstructured kinetic models were used to simulate the experimental data.Logistic model,Luedeking-Piret model and modified Luedeking-Piret model were found suitable to efficiently predict the cell mass,lipase production and glucose consumption respectively with high determination coefficient(R2).From the estimated values of the Luedeking-Piret kinetic model parameters,α and β,it was found that the lipase production by Candida rugosa is growth associated.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an...Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such a...Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
基金supported by the National Natural Science Foundation of China (No.50778110)
文摘Statistical experimental designs were used to optimize the process of phenol degradation by Candida tropicalis Z-04, isolated from phenol-degrading aerobic granules. The most important factors influencing phenol degradation (p 〈 0.05), as identified by a two-level Plackett-Burman design with 11 variables, were yeast extract, phenol, inoculum size, and temperature. Steepest ascent method was undertaken to determine the optimal regions of these four significant factors. Central composite design (CCD) and response surface analysis were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum phenol degradation. The analysis results indicated that interactions between yeast extract and temperature, phenol and temperature, inocuhim size and temperature affected the response variable (phenol degradation) significantly. The predicted results showed that the maximum removal efficiency of phenol (99.10%) could be obtained under the optimum conditions of yeast extract 0.41 g/L, phenol 1.03 g/L, inoculum size 1.43% (V/V) and temperature 30.04℃. These predicted values were further verified by validation experiments. The excellent correlation between predicted and experimental values confirmed the validity and practicability of this statistical optimum strategy. This study indicated the excellent ability of C. tropicalis Z-04 in degrading high-strength phenol. Optimal conditions obtained in this experiment laid a solid foundation for further use of this microorganism in the treatment of highstrength phenol effluents.
文摘Lipase production by Candida rugosa was carried out in submerged fermentation.Plackett-Burman statisticalexperimental design was applied to evaluate the fermentation medium components.The effect of twelve medium components was studied in sixteen experimental trials.Glucose,olive oil,peptone and FeCl3·6H2O were found to have more significance on lipase production by Candida rugosa.Maximum lipase activity of 3.8 u mL-1 was obtained at 50h of fermentation period.The fermentation was carried out at optimized temperature of 3℃,initial pH of 6.8 and shaking speed of 120 r/min.Unstructured kinetic models were used to simulate the experimental data.Logistic model,Luedeking-Piret model and modified Luedeking-Piret model were found suitable to efficiently predict the cell mass,lipase production and glucose consumption respectively with high determination coefficient(R2).From the estimated values of the Luedeking-Piret kinetic model parameters,α and β,it was found that the lipase production by Candida rugosa is growth associated.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
基金This work is supported by the National Key R&D Program of China(No.2022ZD0117501)the Singapore RIE2020 Advanced Manufacturing and Engineering Programmatic Grant by the Agency for Science,Technology and Research(A*STAR)under grant no.A1898b0043Tsinghua University Initiative Scientific Research Program and Low Carbon En-ergy Research Funding Initiative by A*STAR under grant number A-8000182-00-00.
文摘Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by the National Natural Science Foundation of China[82172086]National Key R&D Program of China[2020YFE0201700]+2 种基金Shenyang Science and Technology Talent Support Program[RC210447]Career Development Program for Young and Middle-aged Teachers of Shenyang Pharmaceutical University[ZQN2019004]“Dual Service”Program of University in Shenyang。
文摘Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.