This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the s...This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols.展开更多
Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Pro...Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.展开更多
Soil organic matter(SOM)and pH are not only an important part of soil fertility,but also a source of nutrients for plants and an energy source for the life activities of soil microorganisms(Huang,2000).Moreover,soil o...Soil organic matter(SOM)and pH are not only an important part of soil fertility,but also a source of nutrients for plants and an energy source for the life activities of soil microorganisms(Huang,2000).Moreover,soil organic matter(SOM)has a great impact on soil properties and can improve soil fertility and buffering performance.展开更多
Hohhot Plain, lying in the front of the Yingshan Mountains in inner Mongolia, isbounded by the mountain north, the Yellow River south, the Manhan Mountain east andloess hills southeast. Being 986 to 1100 meters above ...Hohhot Plain, lying in the front of the Yingshan Mountains in inner Mongolia, isbounded by the mountain north, the Yellow River south, the Manhan Mountain east andloess hills southeast. Being 986 to 1100 meters above ses level, the plain generally slopesdown to the southwest, just in accordance with the flowing direction of the Great Heihe Riv-er and the Small Heihe River.展开更多
An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter ...An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter wheat and summer maize growing seasons. The results showed that the continuous application of fertilizer in agricultural soils increased N\-2O emissions by a factor of 24.1—28.1, the calculated annual chemical N fertilizer\|transformed N\-2O\|N emissions was 0.67%. Our results indicated that the application of organic manure also had a significant influence on soil N 2O emissions, which combined with the use of chemical N increased about 20% in a year. It was calculated that there were about 0.11% N of organic manure transformed as N 2O N. Annual mean N 2O emission from our study area of fertilized soils was estimated to be 57.1 μgN 2O/(m 2·h). A weak correlation was also found between N 2O emissions and soil available nitrogen content NH + 4.展开更多
Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological we...Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm^3/cm^3,λ approaches stability. When the volumetric water content is less than 0.35 cm^3/cm^3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function .展开更多
Against the current background of global climate change, the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenh...Against the current background of global climate change, the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenhouse gas. This paper studies spatial and temporal variation in the soil carbon pool and their controlling factors in the southern Song-nen Plain in Heilongjiang Province, using soil data collected over two distinct periods by the Multi-purpose Regional Geochemical Survey in 2005-2007, and another soil survey conducted in 1982-1990. The study area is a carbon source of 1479 t/km2 and in the past 20 years, from the 1980s until 2005, the practical carbon emission from the soil was 0.12 Gt. Temperature, which has been found to be linearly correlated to soil organic carbon, is the domi- nant climatologic factor controlling soil organic carbon contents. Our study shows that in the relevant area and time period the potential loss of soil organic carbon caused by rising temperatures was 0.10 Gt, the potential soil carbon emission resulting from land-use change was 0.09 Gt, and the combined potential loss of soil carbon (0.19 Gt) caused by warming and land-use change is comparable to that of fossil fuel combustion (0.21 Gt). Due to the time delay in soil carbon pool variation, there is still 0.07 Gt in the potential emission caused by warming and land-use change that will be gradually released in the future.展开更多
When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-con...When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-controlled data collected at the Wudaogou Hydrological Experiment Station in the Huaibei Plain, Anhui, China, the variation trends of the evaporation rate of phreatic water from bare soil were studied through the Mann-Kendall trend test and the linear regression trend test, followed by the study on the responses of evaporation to climate change. Results indicated that in the Huaibei Plain during 1991-2008, evaporation of phreatic water from bare soil tended to increase at a rate of 5% on monthly scale in March, June and July while in other months the increase was minor. On the seasonal basis, the evaporation saw significant increase in spring and summer. In addition, annual evaporation tended to grow evidently over time. When air temperature rises by 1 °C, the annual evaporation rate increases by 7.24–14.21%, while when the vapor pressure deficit rises by 10%, it changes from-0.09 to 5.40%. The study also provides references for further understanding of the trends and responses of regional evapotranspiration to climate change.展开更多
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu...Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.展开更多
Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through kn...Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through knowledge on which soil acidification process can be predicted and modified. In this study, titration curve method was adopted to investigate the pH buffer capacity (pHBC) of fluvor-aquic soil, and separate titration curves were established by adding incremental amounts of either standardized hydrochloric acid (HC1) (0.12 mol L^-1) or sodium hydroxide (NaOH) (0.10 mol L^-1) to soil suspended in deionized water (soil:solution = 1:5). Soil pH was measured after 7 d resuspension and isothermal equilibrium (T = 25℃). Linear regressions were fitted to the linear portion of each titration curve and the slopes of these lines were derived as the soil pHBC. The results showed that significant correlations between the amounts of adding acid or alkali and each pH change were presented, and titration curve method was feasible for measurement of pHBC on typical fluvor-aquic soil in Huang-Huai-Hai Plain, and the coefficients of determination were higher than the similar researches on acid soil (R^2 = 0.96). The slope-derived pHBC of acid and alkali were 158.71 and 25.02 mmol kg^-1, respectively. According to the classification of soil buffer systems, the soil tested belongs to the calcium carbonate buffer system, carbonates contribute the most to pHBC, and the contribution of soil organic matter relatively less than it.展开更多
Land use change plays an important part in the studies of global environmental change and regional sustainable development. The change of soil quality can particularly reflect the impacts of human socio-economic activ...Land use change plays an important part in the studies of global environmental change and regional sustainable development. The change of soil quality can particularly reflect the impacts of human socio-economic activities on environment. Taking the coastal plain of south Hangzhou Bay as a study case, we analyzed the effects of land use changes on organic matter (OM), total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), available potassium (AK), total salinity (TS), pH value in soil genetic layers, and assessed soil quality change related to different land use types from 1982 to 2003. The results show that: (1) The general change tendency of soil quality in the coastal plain of south Hangzhou Bay declined obviously in A layer and slightly rise in B (or P) layer and C (or W) layer. The contents of TP decreased generally in all soil genetic layers, but the variety difference of other soil quality indices was relatively great. (2) The change of soil quality in the areas where land use changed is far more remarkable than that with land use unchanged. The value of quality variety is A layer 〉B (or P) layer 〉C (or W) layer. (3) The changes of soil tillage, cultivation, fertilization, irrigation and drainage activities related to land use may make some soil-forming processes disappeared and bring in other new processes which will affect the soil quality and soil genetic layers directly.展开更多
The North China Plain (NCP) lying along the eastern coastal area withgeogriaphical coordinates 100°to 120°and 30° to 40°W, is one of the mostimportan agncultural ngons in China. A problem in soil s...The North China Plain (NCP) lying along the eastern coastal area withgeogriaphical coordinates 100°to 120°and 30° to 40°W, is one of the mostimportan agncultural ngons in China. A problem in soil salmization has beenfound in vast areas along the lower reaches of the Yellow hiver and north of it. After30 years of work on saline soil amelioration, 2.0 million ha has been improved,accounting for over 60 percen of the total ongnal saline soil area. Ths achievetnenthas ban obtained in close relation to water conservancy work. The author analyzessalthezation amelioration by using measures concerning subsuffoce water regulation.Ih addition to water conservancy measures, thes paper also descnbes acomprehensive way to ameliorate salthezation in northem NCP. Finally, the authorstresses the necessity of combining all measures together into a whole system forsolving salinization problems in northem NCP.展开更多
The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio ...The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils.展开更多
The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon se...The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain.展开更多
Soil bulk density is a basic but important physic soil property related to soil porosity,soil moisture and hydraulic conductivity,which is crucial to soil quality assessment and land use management.In this study,we ev...Soil bulk density is a basic but important physic soil property related to soil porosity,soil moisture and hydraulic conductivity,which is crucial to soil quality assessment and land use management.In this study,we evaluated the spatial variability of soil bulk density in the 0–20,20–40,40–60 and 60–100 cm layers as well as its affecting factors in Southwest China’s agricultural intensive area.Results indicated the mean value of surface soil bulk density(0–20 cm)was 1.26 g cm^(–3),significantly lower than that of subsoil(20–100 cm).No statistical difference existed among the subsoil with a mean soil bulk density of 1.54 g cm^(–3).Spatially,soil bulk density played a similar spatial pattern in soil profile,whereas obvious differences were found in details.The nugget effects for soil bulk density in the 0–20 and 20–40 cm layers were 27.22 and27.02%while 12.06 and 3.46%in the 40–60 and 60–100 cm layers,respectively,gradually decreasing in the soil profile,indicating that the spatial variability of soil bulk density above 40 cm was affected by structural and random factors while dominated by structural factors under 40 cm.Soil organic matter was the controlling factor on the spatial variability of soil bulk density in each layer.Land use and elevation were another two dominated factor controlling the spatial variability of soil bulk density in the 0–20 and 40–60 cm layers,respectively.Soil genus was one of the dominated factors controlling the spatial variability of soil bulk below 40 cm.展开更多
Cropland productivity has been significantly impacted by soil acidification resulted from nitrogen (N) fertilization, especially as a result of excess ammoniacal N input. With decades' intensive agricultural cultiv...Cropland productivity has been significantly impacted by soil acidification resulted from nitrogen (N) fertilization, especially as a result of excess ammoniacal N input. With decades' intensive agricultural cultivation and heavy chemical N input in the Huang-Huai-Hai Plain, the impact extent of induced proton input on soil pH in the long term was not yet clear. In this study, acidification rates of different soil layers in the soil profile (0-120 cm) were calculated by pH buffer capacity (pHBC) and net input of protons due to chemical N incorporation. Topsoil (0-20 cm) pH changes of a long-term fertilization field (from 1989) were determined to validate the predicted values. The results showed that the acid and alkali buffer capacities varied significantly in the soil profile, averaged 692 and 39.8 mmolc kg-1 pH-1, respectively. A significant (P〈0.05) correlation was found between pHRC and the content of calcium carbonate. Based on the commonly used application rate of urea (500 kg N ha-1 yr-1), the induced proton input in this region was predicted to be 16.1 kmol ha-1 yr-1, and nitrification and plant uptake of nitrate were the most important mechanisms for proton producing and consuming, respectively. The acidification rate of topsoil (0-20 cm) was estimated to be 0.01 unit pH yr-1 at the assumed N fertilization level. From 1989 to 2009, topsoil pH (0-20 cm) of the long-term fertilization field decreased from 8.65 to 8.50 for the PK (phosphorus, 150 kg P205 ha-1 yr-1; potassium, 300 kg K20 ha-1 yr-1; without N fertilization), and 8.30 for NPK (nitrogen, 300 kg N ha-1 yr-1; phosphorus, 150 kg P2Os ha-1 yr-1; potassium, 300 kg K20 ha -1 yr-1), respectively. Therefore, the apparent soil acidification rate induced by N fertilization equaled to 0.01 unit pH yr-1, which can be a reference to the estimated result, considering the effect of atmospheric N deposition, crop biomass, field management and plant uptake of other nutrients and cations. As protons could be consumed by some field practices, such as stubble return and coupled water and nutrient management, soil pH would maintain relatively stable if proper management practices can be adopted in this region.展开更多
1 Introduction Marsh-wetland,as an important type of wetlands,is a synthetic natural ecosystem with rich soil organic carbon.The largest area of marsh-wetland was located in Sanjiang Plain in the Northeast China and o...1 Introduction Marsh-wetland,as an important type of wetlands,is a synthetic natural ecosystem with rich soil organic carbon.The largest area of marsh-wetland was located in Sanjiang Plain in the Northeast China and obvious land use changes have occurred during the last 50 years with large area of marsh-wetland cultivated to farmland which had a big impact on soil organic carbon stock.In this study,spatial distributions of 0-20cm soil organic carbon sources and sinks in Sanjiang Plain were investigated from 1980 to 2016.展开更多
文摘This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols.
基金Supported by Multi-goal Geochemical Survey in Laoling-Hekou Regions,Shandong Province of National Soil Survey and Pollution Prevention(GZTR20060104)~~
文摘Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.
基金granted by Evolution and Sustainable Utilization of Land Resources in Key Belts of Global Black Land(IGCP 665)Geochemistry Investigation on Land Quality of Black Soil in Northeast China on the Scale of 1:250,000(Grant No.121201007000150076).
文摘Soil organic matter(SOM)and pH are not only an important part of soil fertility,but also a source of nutrients for plants and an energy source for the life activities of soil microorganisms(Huang,2000).Moreover,soil organic matter(SOM)has a great impact on soil properties and can improve soil fertility and buffering performance.
文摘Hohhot Plain, lying in the front of the Yingshan Mountains in inner Mongolia, isbounded by the mountain north, the Yellow River south, the Manhan Mountain east andloess hills southeast. Being 986 to 1100 meters above ses level, the plain generally slopesdown to the southwest, just in accordance with the flowing direction of the Great Heihe Riv-er and the Small Heihe River.
基金TheNationalNaturalScienceFoundationofChina (No .496 710 0 4) TheDirectorFoundationofInstituteofGeographicSciencesandNaturalRe
文摘An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter wheat and summer maize growing seasons. The results showed that the continuous application of fertilizer in agricultural soils increased N\-2O emissions by a factor of 24.1—28.1, the calculated annual chemical N fertilizer\|transformed N\-2O\|N emissions was 0.67%. Our results indicated that the application of organic manure also had a significant influence on soil N 2O emissions, which combined with the use of chemical N increased about 20% in a year. It was calculated that there were about 0.11% N of organic manure transformed as N 2O N. Annual mean N 2O emission from our study area of fertilized soils was estimated to be 57.1 μgN 2O/(m 2·h). A weak correlation was also found between N 2O emissions and soil available nitrogen content NH + 4.
基金financially supported by the Fundamental Research Fund of the Chinese Academy of Geological Sciences (YYFM201624)
文摘Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm^3/cm^3,λ approaches stability. When the volumetric water content is less than 0.35 cm^3/cm^3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function .
基金funded by Commonweal Trade Scientific Research from the Ministry of Land and Resources of the People's Republic of China
文摘Against the current background of global climate change, the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenhouse gas. This paper studies spatial and temporal variation in the soil carbon pool and their controlling factors in the southern Song-nen Plain in Heilongjiang Province, using soil data collected over two distinct periods by the Multi-purpose Regional Geochemical Survey in 2005-2007, and another soil survey conducted in 1982-1990. The study area is a carbon source of 1479 t/km2 and in the past 20 years, from the 1980s until 2005, the practical carbon emission from the soil was 0.12 Gt. Temperature, which has been found to be linearly correlated to soil organic carbon, is the domi- nant climatologic factor controlling soil organic carbon contents. Our study shows that in the relevant area and time period the potential loss of soil organic carbon caused by rising temperatures was 0.10 Gt, the potential soil carbon emission resulting from land-use change was 0.09 Gt, and the combined potential loss of soil carbon (0.19 Gt) caused by warming and land-use change is comparable to that of fossil fuel combustion (0.21 Gt). Due to the time delay in soil carbon pool variation, there is still 0.07 Gt in the potential emission caused by warming and land-use change that will be gradually released in the future.
基金financially supported by“the Fundamental Research Funds for the Central Universities”of Hefei University of Technology(No.JZ2014HGBZ0040)the National Natural Science Foundation of China(No.51509064+2 种基金No.51309071No.51309155)the National Key Research and Development Programs of China(Grand 2016YFA0601601,2016YFA0601501)
文摘When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-controlled data collected at the Wudaogou Hydrological Experiment Station in the Huaibei Plain, Anhui, China, the variation trends of the evaporation rate of phreatic water from bare soil were studied through the Mann-Kendall trend test and the linear regression trend test, followed by the study on the responses of evaporation to climate change. Results indicated that in the Huaibei Plain during 1991-2008, evaporation of phreatic water from bare soil tended to increase at a rate of 5% on monthly scale in March, June and July while in other months the increase was minor. On the seasonal basis, the evaporation saw significant increase in spring and summer. In addition, annual evaporation tended to grow evidently over time. When air temperature rises by 1 °C, the annual evaporation rate increases by 7.24–14.21%, while when the vapor pressure deficit rises by 10%, it changes from-0.09 to 5.40%. The study also provides references for further understanding of the trends and responses of regional evapotranspiration to climate change.
基金Project supported by the Knowledge Innovation Engineering Project of the Chinese Academy of Sciences(No. KSCX2-YW-N-46-06)the National Natural Science Foundation of China(No. 40501030).
文摘Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
基金supported by the National Basic Research Project of China (2005CB121103)
文摘Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through knowledge on which soil acidification process can be predicted and modified. In this study, titration curve method was adopted to investigate the pH buffer capacity (pHBC) of fluvor-aquic soil, and separate titration curves were established by adding incremental amounts of either standardized hydrochloric acid (HC1) (0.12 mol L^-1) or sodium hydroxide (NaOH) (0.10 mol L^-1) to soil suspended in deionized water (soil:solution = 1:5). Soil pH was measured after 7 d resuspension and isothermal equilibrium (T = 25℃). Linear regressions were fitted to the linear portion of each titration curve and the slopes of these lines were derived as the soil pHBC. The results showed that significant correlations between the amounts of adding acid or alkali and each pH change were presented, and titration curve method was feasible for measurement of pHBC on typical fluvor-aquic soil in Huang-Huai-Hai Plain, and the coefficients of determination were higher than the similar researches on acid soil (R^2 = 0.96). The slope-derived pHBC of acid and alkali were 158.71 and 25.02 mmol kg^-1, respectively. According to the classification of soil buffer systems, the soil tested belongs to the calcium carbonate buffer system, carbonates contribute the most to pHBC, and the contribution of soil organic matter relatively less than it.
基金National Natural Science Foundation of China, No.40701006 Natural Science Foundation of Zhejiang Province, No.Y505032+2 种基金 Natural Science Foundation of Ningbo, No.2006A610077 No.2002C10026 K. C. Wong Magna Fund in Ningbo University
文摘Land use change plays an important part in the studies of global environmental change and regional sustainable development. The change of soil quality can particularly reflect the impacts of human socio-economic activities on environment. Taking the coastal plain of south Hangzhou Bay as a study case, we analyzed the effects of land use changes on organic matter (OM), total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), available potassium (AK), total salinity (TS), pH value in soil genetic layers, and assessed soil quality change related to different land use types from 1982 to 2003. The results show that: (1) The general change tendency of soil quality in the coastal plain of south Hangzhou Bay declined obviously in A layer and slightly rise in B (or P) layer and C (or W) layer. The contents of TP decreased generally in all soil genetic layers, but the variety difference of other soil quality indices was relatively great. (2) The change of soil quality in the areas where land use changed is far more remarkable than that with land use unchanged. The value of quality variety is A layer 〉B (or P) layer 〉C (or W) layer. (3) The changes of soil tillage, cultivation, fertilization, irrigation and drainage activities related to land use may make some soil-forming processes disappeared and bring in other new processes which will affect the soil quality and soil genetic layers directly.
文摘The North China Plain (NCP) lying along the eastern coastal area withgeogriaphical coordinates 100°to 120°and 30° to 40°W, is one of the mostimportan agncultural ngons in China. A problem in soil salmization has beenfound in vast areas along the lower reaches of the Yellow hiver and north of it. After30 years of work on saline soil amelioration, 2.0 million ha has been improved,accounting for over 60 percen of the total ongnal saline soil area. Ths achievetnenthas ban obtained in close relation to water conservancy work. The author analyzessalthezation amelioration by using measures concerning subsuffoce water regulation.Ih addition to water conservancy measures, thes paper also descnbes acomprehensive way to ameliorate salthezation in northem NCP. Finally, the authorstresses the necessity of combining all measures together into a whole system forsolving salinization problems in northem NCP.
基金Sponsored by the Major State Scientific and Technological Projects of Water Pollution Control and Treatment(Grant No.2008ZX07208-005)
文摘The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201203012)the National Natural Science Foundation of China(41373084,41330528,41203054)
文摘The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain.
基金supported by the National Natural Science Foundation of China (4120124)the Science Fund of the Education Department of Sichuan Province, China (16ZB0048)
文摘Soil bulk density is a basic but important physic soil property related to soil porosity,soil moisture and hydraulic conductivity,which is crucial to soil quality assessment and land use management.In this study,we evaluated the spatial variability of soil bulk density in the 0–20,20–40,40–60 and 60–100 cm layers as well as its affecting factors in Southwest China’s agricultural intensive area.Results indicated the mean value of surface soil bulk density(0–20 cm)was 1.26 g cm^(–3),significantly lower than that of subsoil(20–100 cm).No statistical difference existed among the subsoil with a mean soil bulk density of 1.54 g cm^(–3).Spatially,soil bulk density played a similar spatial pattern in soil profile,whereas obvious differences were found in details.The nugget effects for soil bulk density in the 0–20 and 20–40 cm layers were 27.22 and27.02%while 12.06 and 3.46%in the 40–60 and 60–100 cm layers,respectively,gradually decreasing in the soil profile,indicating that the spatial variability of soil bulk density above 40 cm was affected by structural and random factors while dominated by structural factors under 40 cm.Soil organic matter was the controlling factor on the spatial variability of soil bulk density in each layer.Land use and elevation were another two dominated factor controlling the spatial variability of soil bulk density in the 0–20 and 40–60 cm layers,respectively.Soil genus was one of the dominated factors controlling the spatial variability of soil bulk below 40 cm.
基金financially supported by the National Basic Research Program of China (2011CB100506)the China Agriculture Research System-Wheat (CARS-03-02A)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-N-08)Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Sciences (Y412201401)
文摘Cropland productivity has been significantly impacted by soil acidification resulted from nitrogen (N) fertilization, especially as a result of excess ammoniacal N input. With decades' intensive agricultural cultivation and heavy chemical N input in the Huang-Huai-Hai Plain, the impact extent of induced proton input on soil pH in the long term was not yet clear. In this study, acidification rates of different soil layers in the soil profile (0-120 cm) were calculated by pH buffer capacity (pHBC) and net input of protons due to chemical N incorporation. Topsoil (0-20 cm) pH changes of a long-term fertilization field (from 1989) were determined to validate the predicted values. The results showed that the acid and alkali buffer capacities varied significantly in the soil profile, averaged 692 and 39.8 mmolc kg-1 pH-1, respectively. A significant (P〈0.05) correlation was found between pHRC and the content of calcium carbonate. Based on the commonly used application rate of urea (500 kg N ha-1 yr-1), the induced proton input in this region was predicted to be 16.1 kmol ha-1 yr-1, and nitrification and plant uptake of nitrate were the most important mechanisms for proton producing and consuming, respectively. The acidification rate of topsoil (0-20 cm) was estimated to be 0.01 unit pH yr-1 at the assumed N fertilization level. From 1989 to 2009, topsoil pH (0-20 cm) of the long-term fertilization field decreased from 8.65 to 8.50 for the PK (phosphorus, 150 kg P205 ha-1 yr-1; potassium, 300 kg K20 ha-1 yr-1; without N fertilization), and 8.30 for NPK (nitrogen, 300 kg N ha-1 yr-1; phosphorus, 150 kg P2Os ha-1 yr-1; potassium, 300 kg K20 ha -1 yr-1), respectively. Therefore, the apparent soil acidification rate induced by N fertilization equaled to 0.01 unit pH yr-1, which can be a reference to the estimated result, considering the effect of atmospheric N deposition, crop biomass, field management and plant uptake of other nutrients and cations. As protons could be consumed by some field practices, such as stubble return and coupled water and nutrient management, soil pH would maintain relatively stable if proper management practices can be adopted in this region.
基金granted by the United Nations Educational,Scientific and Cultural Organization program(IGCP665)the China basic geological Investigation Program(Grant No.DD20160316).
文摘1 Introduction Marsh-wetland,as an important type of wetlands,is a synthetic natural ecosystem with rich soil organic carbon.The largest area of marsh-wetland was located in Sanjiang Plain in the Northeast China and obvious land use changes have occurred during the last 50 years with large area of marsh-wetland cultivated to farmland which had a big impact on soil organic carbon stock.In this study,spatial distributions of 0-20cm soil organic carbon sources and sinks in Sanjiang Plain were investigated from 1980 to 2016.