Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has b...Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements.展开更多
Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable densi...Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U22A20166,52104141,12172230 and U2013603)the Department of Science and Technology of Guangdong Province(No.2019ZT08G315)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012654).
文摘Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements.
基金The authors wish to thank the support from the‘Double Tops’Construction Independent Innovation Project of China University of Mining and Technology(Grant No.2018ZZCX04).
文摘Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering.