期刊文献+
共找到4,147篇文章
< 1 2 208 >
每页显示 20 50 100
Activity Pattern and Habitat Use of Shorebirds in an Artificial Wetland Complex:A Case Study of Breeding Pied Avocet in the Yellow River Delta,China
1
作者 LI Dong LI Bin +4 位作者 XU He FAN Chao WU Yang ZHANG Yuxin HOU Xiyong 《Chinese Geographical Science》 SCIE CSCD 2024年第4期618-630,共13页
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro... With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones. 展开更多
关键词 satellite tracking home range habitat use artificial wetland coastal zone Pied Avocet Yellow river Delta China
下载PDF
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
2
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER Soil organic carbon Temporal variation Vegetation aboveground biomass Yellow river source region
下载PDF
Vulnerability assessment of coastal wetlands in Minjiang River Estuary based on cloud model under sea level rise
3
作者 Xiaohe Lai Chuqing Zeng +4 位作者 Yan Su Shaoxiang Huang Jianping Jia Cheng Chen Jun Jiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第7期160-174,共15页
The change of coastal wetland vulnerability affects the ecological environment and the economic development of the estuary area.In the past,most of the assessment studies on the vulnerability of coastal ecosystems sta... The change of coastal wetland vulnerability affects the ecological environment and the economic development of the estuary area.In the past,most of the assessment studies on the vulnerability of coastal ecosystems stayed in static qualitative research,lacking predictability,and the qualitative and quantitative relationship was not objective enough.In this study,the“Source-Pathway-Receptor-Consequence”model and the Intergovernmental Panel on Climate Change vulnerability definition were used to analyze the main impact of sea level rise caused by climate change on coastal wetland ecosystem in Minjiang River Estuary.The results show that:(1)With the increase of time and carbon emission,the area of high vulnerability and the higher vulnerability increased continuously,and the area of low vulnerability and the lower vulnerability decreased.(2)The eastern and northeastern part of the Culu Island in the Minjiang River Estuary of Fujian Province and the eastern coastal wetland of Meihua Town in Changle District are areas with high vulnerability risk.The area of high vulnerability area of coastal wetland under high emission scenario is wider than that under low emission scenario.(3)Under different sea level rise scenarios,elevation has the greatest impact on the vulnerability of coastal wetlands,and slope has less impact.The impact of sea level rise caused by climate change on the coastal wetland ecosystem in the Minjiang River Estuary is mainly manifested in the sea level rise,which changes the habitat elevation and daily flooding time of coastal wetlands,and then affects the survival and distribution of coastal wetland ecosystems. 展开更多
关键词 vulnerability assessment cloud model coastal wetland Minjiang river Estuary
下载PDF
Biophysical warming patterns of an open-top chamber and its short-term influence on a Phragmites wetland ecosystem in China
4
作者 Xue-yang Yu Si-yuan Ye +4 位作者 Li-xin Pei Liu-juan Xie Ken W.Krauss Samantha K.Chapman Hans Brix 《China Geology》 CAS CSCD 2023年第4期594-610,共17页
Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in ... Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated.The authors also quantified the preliminary influence of experimental chamber warming on plant traits.OTCs produced an elevated average air temperature of 0.8°C(relative to controls) during the growing season(June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from-2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soilatmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes(Panjin and Yancheng). 展开更多
关键词 Open-top chambers(OTCs)warming Phragmites australis wetland Short-term ecosystem impact Climate warming Soil heat flux Soil-atmosphere heat transfer Ecological geological engineering Hydrogeological engineering Yellow river Delta
下载PDF
Landscape planning and ecology construction of wetland comprehensive protected area system in the Sanjiang Plain 被引量:3
5
作者 LIU Hong\|yu, LU Xian\|guo, LIU Zhen\|qian (Changchun Institute of Geography, Chinese Academy of Sciences, Changchun 130021, China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第3期361-366,共6页
Wetland is one of the richest biodiversity areas in the earth. The main purpose of establishing wetland protected area is to protect biodiversity, and the protection of ecosystem diversity and landscape diversity is t... Wetland is one of the richest biodiversity areas in the earth. The main purpose of establishing wetland protected area is to protect biodiversity, and the protection of ecosystem diversity and landscape diversity is the key to protect biodiversity. In order to protect regional ecosystem and landscape, it is a good way to establish wetland comprehensive protected area which connected wetland nature reserves by habitat corridors. The Sanjiang Plain as a study area, its landscape evaluation index system on wetland protected area was studied, and some problems on landscape planning and ecology construction were further approached in this paper.It showed that establishing wetland comprehensive protected area is very important to protect regional wetlands, to maintain ecological balance, and to improve the sustainable development of agriculture and industry in this region. 展开更多
关键词 landscape planning ecology construction wetland protected area
下载PDF
Changes of Coastal Wetland Ecosystems in the Yellow River Delta and Protection Countermeasures to Them 被引量:2
6
作者 Guangzhou CUI Xuliang ZHANG +1 位作者 Zhaohui ZHANG Zongjun XU 《Asian Agricultural Research》 2013年第1期48-50,共3页
Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have und... Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have undergone changes of landscape fragmentation, vegetation degradation, pollution, species reduction, and harmful exotic species invasion. These changes have influenced sustainable and healthy development of marine economy of the Yellow River Delta. To protect natural ecological environment of the Yellow River Delta, the authors recommended that it should establish and improve policies, laws and regulations of wetland protection; carry out wetland resource investigation and assessment and monitoring; strengthen comprehensive protection and control of wetland; reduce wetland degradation and promote sustainable use of wetland. 展开更多
关键词 The YELLOW river Delta COASTAL wetland ECOsystem C
下载PDF
Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China 被引量:6
7
作者 FENG Jiuge LIANG Jinfeng +3 位作者 LI Qianwei ZHANG Xiaoya YUE Yi GAO Junqin 《Chinese Geographical Science》 SCIE CSCD 2021年第2期197-208,共12页
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow ... Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage. 展开更多
关键词 coastal wetland hydrological connectivity soil carbon carbon storage spatiotemporal variation the Yellow river Delta
下载PDF
Planning and Ecological Landscape Design of Urban Constructed Wetland 被引量:1
8
作者 BU Lin 《Journal of Landscape Research》 2014年第2期41-44,49,共5页
In addition to purifying water, constructed wetland has become an important ecological landscape in city. The characteristics and key design points of constructed wetland under the ecological principles were explored,... In addition to purifying water, constructed wetland has become an important ecological landscape in city. The characteristics and key design points of constructed wetland under the ecological principles were explored, taking the Jingyue Lake in Zhongxiang City, Hubei Province for example, treatment processes were designed for different infl ow waters on the basis of site analysis to facilitate the water environment control and ecological landscape construction, ecological theories were applied to explore functional layouts and landscape designs of wetland, to build a favorable ecological environment of urban wetland and design outstanding wetland ecological landscapes. 展开更多
关键词 Constructed wetland ECOLOGY Urban water environment Landscape planning
下载PDF
Investigation on Water Pollution of Four Rivers in Coastal Wetland of Yellow River Estuary 被引量:1
9
作者 LIU Feng DONG Guan-cang +2 位作者 QIN Yu-guang LIU Chao ZHU Shi-wen 《Meteorological and Environmental Research》 CAS 2011年第9期51-55,61,共6页
[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao Ri... [Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, etc. were measured. Afterwards, the status quo of water pollution was assessed based on Nemero index and comprehensive trophic level index (TLI), so as to find out the integral status quo of water quality of wetland rivers and damages to aquatic ecological environment. [Result] On the whole, water pollution of four rivers in coastal wetland of Yellow River estuary was serious, in the eutrophication state, and the main pollutants were TN, TP, NH+4-N and petroleum. In addition, excessive N and P in the four rivers resulted in water eutrophication of Bohai Bay, so further leading to ride tide, which destroyed the coastal ecological environment of Bohai Sea. Moreover, compared with historical data, water pollution by nitrogen and phosphorus became more serious, while there was no obvious aggravation in the water pollution by petroleum. In a word, water pollution wasn’t optimistic on the whole. [Conclusion] The research could provide theoretical bases for the protection and utilization of river water in coastal wetland of Yellow River estuary and its coastal sea area. 展开更多
关键词 Coastal wetland of Yellow river estuary rivers flowing into the sea Water pollution Investigation on the status quo Nemero index comprehensive trophic level index (TLI) China
下载PDF
Optimizing Rank of Landscape Planning Works of Urban Wetland Park 被引量:1
10
作者 Qiao Li-fang Zhang Yi-chuan +1 位作者 Qi An-guo Li Xin-zheng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第3期87-91,共5页
Classifying and ranking the huge amounts of landscape planning works of urban wetland park is always difficult due to the multi-functions (ecological, leisure, educational and disaster prevention) of the urban wetla... Classifying and ranking the huge amounts of landscape planning works of urban wetland park is always difficult due to the multi-functions (ecological, leisure, educational and disaster prevention) of the urban wetland park. Therefore, an optimizing rank system is urgently needed. Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) models were used to rank the planning works of 30 urban wetland park based on four mainly factors, which included landscape ecological planning, landscape planning, ecological planning and economic planning. The study indicated that the AHP- TOPSIS model had good discrimination in the classification and ranking of landscape planning works of urban wetland park and it was also applicable to the planning works of other urban greenbelts. 展开更多
关键词 landscape planning work optimizing rank urban wetland park Analytic Hierarchy Process (AHP) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
下载PDF
Purification Effect of Constructed Wetlands for Treating River Water Flowing from Phosphate Mine Areas into Fuxian Lake
11
作者 WANG Lin KE Fan +2 位作者 FENG Mu-hua SUN Pei-shi ZHU Hui-xian 《Meteorological and Environmental Research》 2012年第7期38-41,共4页
[ Objective] The study aimed at discussing the purification effect of constructed wetlands for treating river water flowing from phosphate mine areas into Fuxian Lake. [Method] The running parameters of the constructe... [ Objective] The study aimed at discussing the purification effect of constructed wetlands for treating river water flowing from phosphate mine areas into Fuxian Lake. [Method] The running parameters of the constructed wetlands were investigated for one year, and the purification effect of the constructed wetlands for treating the sewage from phosphate mine areas was analyzed. [Result] With the aid of the constructed wet- land, the average removal rates of total nitrogen (TN), total phosphorus (TP) and CODcr were 52%, 32% and 54%, and the removal effects were best when the designed hydraulic load was 0.67 m3/( m2 · d). Running stably for six years, the constructed wetlands had advantages of no power, low resistance and high removal rate. [ Conclusion] The constructed wetlands reduced the load of pollutants from phosphate mine areas into Fuxian Lake effectivelv, which Dlaved important roles in the Drotection of water aualitv of Fuxian Lake. 展开更多
关键词 Fuxian Lake Dongda river Phosphate removing Constructed wetlands China
下载PDF
Dynamic Changes in the Wetland Landscape Pattern of the Yellow River Delta from 1976 to 2016 Based on Satellite Data 被引量:14
12
作者 CONG Pifu CHEN Kexin +1 位作者 QU Limei HAN Jianbo 《Chinese Geographical Science》 SCIE CSCD 2019年第3期372-381,共10页
The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this st... The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta. 展开更多
关键词 LANDSCAPE pattern OBJECT-ORIENTED classification LANDSAT wetlandS YELLOW river Delta
下载PDF
Causes of Wetland Degradation and Ecological Restoration in the Yellow River Delta Region 被引量:9
13
作者 Zhang Jian-feng Sun Qi-xiang 《Forestry Studies in China》 CAS 2005年第2期15-18,共4页
Yellow River delta (YRD) is one of the biggest deltas that there is a large area of wetland in the world. Thanks to soil (sands) sediment carried by the Yellow River, there was averagely the newly formed land 21.3... Yellow River delta (YRD) is one of the biggest deltas that there is a large area of wetland in the world. Thanks to soil (sands) sediment carried by the Yellow River, there was averagely the newly formed land 21.3 km^2 in YRD. During the development of petroleum industry and urban expansion, wetlands were degraded due to population growth, irrational land use, in addition to adverse natural eco-environment such as lower precipitation, higher soil evaporation and soil salinazation. The major ecological measures to restore degraded wetland concerned with ensuring water supply, especially establishing perfect irrigation works; protecting virgin plant communities and assisting them to regenerate by the way of site preparation, improving living surroundings; introducing salt-tolerant plants to increase vegetation species and plant coverage, thereby enhancing the capability of wetland to combat contamination and pollution through plant remediation, uptake, absorption, etc. Finally making a comprehensive land use plan, accordingly removing deleterious facilities. 展开更多
关键词 Yellow river delta wetland RESTORATION
下载PDF
Assessment of wetland fragmentation in the middle reaches of the Heihe River by the type change tracker model 被引量:6
14
作者 RuiFeng ZHAO ZuoLun XIE +3 位作者 LiHua ZHANG Wen ZHU Jie LI Dan LIANG 《Journal of Arid Land》 SCIE CSCD 2015年第2期177-188,共12页
The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote se... The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote sensing and GIS, we constructed the type change tracker model with sliding window technique and spatially mor- phological rule. The suitable scale and optimum scale of the fragmentation model of wetland landscape in the middle reaches of the Heihe River were determined by the area frequency statistics method, Chi-square distribution normal- ized scale variance, fractal dimension and diversity index. By integrating type change tracker model and the optimum scale with GIS spatial analysis, the spatial distribution characteristics of wetland landscape fragmentation in different periods and the related spatial-temporal change process were clarified. The results showed that (1) the type change tracker model, which analyzes the spatial pattern of wetland fragmentation on the pixel level, is better than the tradi- tional wetland fragmentation analysis on the landscape and patch levels; (2) The suitable scale for the wetland frag- mentation ranged from 150 rex150 m to 450 mx450 m and the optimum scale was 250 mx250 m in the middle reaches of the Heihe River; and (3) In the past 35 years, the total wetland area decreased by 23.2% and the frag- mentatJon of wetland markedly increased in the middle reaches of the Heihe River. The areas of core wetlands re- duced by 12.8% and the areas of perforated, edge and patch wetlands increased by 0.8%, 3.1% and 8.9%, respec- tively. The process of wetland fragmentation in the research region showed the order of core wetland, perforated or edge wetland, patch wetland or non-wetland. The results of this study would provide a reference for the protection, utilization and restoration of limited wetland resources and for the sustainable development of the regional eco-environment in the Heihe River Basin. 展开更多
关键词 wetland landscape pattern fragmentation the type change tracker model Heihe river
下载PDF
Impacts of Coastal Reclamation on Natural Wetlands in Large River Deltas in China 被引量:2
15
作者 MA Tiantian LI Xiaowen +1 位作者 BAI Junhong CUI Baoshan 《Chinese Geographical Science》 SCIE CSCD 2019年第4期640-651,共12页
Little information is available on the impacts of coastal reclamation on wetland loss in large-river deltas at a regional scale.Using remote sensing data of coastal wetland and reclamation in four deltas in China from... Little information is available on the impacts of coastal reclamation on wetland loss in large-river deltas at a regional scale.Using remote sensing data of coastal wetland and reclamation in four deltas in China from 1978 to 2014, we tracked their continuous area changes in four periods: 1978–1990, 1990–2000, 2000–2008, and 2008–2014. The areal relation between wetland loss and reclamation was quantified and used to identify coastal reclamation mode intensity coupled with another three indicators: reclamation rate,accretion rate and land-use intensity of coastal reclamation. The results showed that coastal reclamation driven by economic development reduced, or even reverse the original growth of delta which was determined by the offset between wetland acceleration rate and wetland loss rate. Generally, the area of reclamation showed a positive linear correlation with the area of wetland loss. The findings imply that human activities should control reclamation rate and intensity to alleviate total wetland loss and maintain wetland ’net gain’.Inappropriate coastal reclamation modes can magnify total wetland loss;therefore, coastal reclamation with a slow increment rate and low impervious surface percent is of great importance for sustainable development in future coastal management. 展开更多
关键词 COASTAL RECLAMATION wetland loss COASTAL RECLAMATION mode multi-case comparison large river DELTA COASTAL management
下载PDF
STUDY ON THE SUSTAINABLE DEVELOPMENT OF WETLAND RESOURCES IN THE USSURI /WUSULI RIVER BASIN 被引量:1
16
作者 Hong-yu Liu Xian-guo Lu Chang-ke Wang 《Chinese Geographical Science》 SCIE CSCD 2000年第3期79-84,共2页
The Ussuri/Wusuli River basin joins the border between the Northeast region of Heilongjiang Province of China and the Far East region of Russia. The watershed consists of approximately 26 000 000 ha and the shared bor... The Ussuri/Wusuli River basin joins the border between the Northeast region of Heilongjiang Province of China and the Far East region of Russia. The watershed consists of approximately 26 000 000 ha and the shared border stretches more than 1100 km. The Ussuri River forms part of the border between Russia and China. Two thirds of the watershed ecosystem is in Russia, one third in China. Khanka / Xingkai Lake is the border Lake of Russia and China, with the area of 4380 km2. The Ussuri / Wusuli River Basin is rich in wetland resources, including surface water resources and wetlands. There are about more than 100 rivers belonging to one and two branch rivers, wetlands are mainly distributed in the Sanjiang Plain in China, which is the largest marsh area in China, with an area of 114 million ha. Human activities and agriculture reclamation for many years have led to many environment problems: 1)decreasing of wetland area led to loss of wetland environment functions, decreasing of biodiversity and increasing the number of natural disasters such as disastrous drought and waterlogging, which affect directly sustainable utilization of resources and economical development. 2) water supply is not evenly distributed, water pollution in rivers, marshes and lakes are more serious than before. Based on above study, some suggests of sustainable development in the basin have been made, which include: 1) developing the international wetland natural reserve and domestic comprehensive protected area to prevent wetlands from destruction and disturbance by human activities, 2) strengthening the protection and management of wetlands in lake shorelines and riparian zones (rivers and streams) to prevent water quality of rivers and lakes from pollution, 3) restoring the destroyed marsh in riparian zones and the  island like forests" of wetlands 4) developing positively transnational ecological tourist trade to promote the economic development in the river basin scope, 5) developing international cooperation research to promote sustainable utilization and protection of wetland resources. 展开更多
关键词 wetland RESOURCES sustainable development the Ussuri river water RESOURCES
下载PDF
Treatment Efficiencies of Constructed Wetlands for Eutrophic Landscape River Water 被引量:51
17
作者 HE Sheng-Bing YAN Li KONG Hai-Nan LIU Zhi-Ming WU De-Yi HU Zhan-Bo 《Pedosphere》 SCIE CAS CSCD 2007年第4期522-528,共7页
The efficiencies of two types of constructed wetlands for the treatment of low-concentration polluted eutrophic land- scape river water were studied in the western section of the Qingyuan River at the Minhang campus o... The efficiencies of two types of constructed wetlands for the treatment of low-concentration polluted eutrophic land- scape river water were studied in the western section of the Qingyuan River at the Minhang campus of Shanghai Jiaotong University.The first wetland was a single-stage system using gravel as a filtration medium,and the second was a three- stage system filled with combinations of gravel,zeolite,and fly ash.Results from parallel operations of the wetlands showed that the three-stage constructed wetland could remove organics,nitrogen, and phosphorus successfully.At the same time,it could also decrease ammoniacal odour in the effluent.Compared to the single-stage constructed wetland,it had better nutrient removal efficiencies with a higher removal of 19.37%-65.27% for total phosphorus (TP) and 21.56%- 62.94% for total nitrogen (TN),respectively,during the operation period of 14 weeks.In terms of removal of chemical oxygen demand (COD), turbidity,and blue-green algae,these two wetland systems had equivalent performances.It was also found that in the western section of the test river,in which the two constructed wetlands were located, the water quality was much better than that in the eastern and middle sections without constructed wetland because COD,TN, and TP were all in a relatively lower level and the eutrophication could be prevented completely in the western section. 展开更多
关键词 湿地 地貌 水处理 水资源
下载PDF
Planning and Design of Suzhou Sanjiaozui Wetland Park 被引量:1
18
作者 YAO Lan 《Journal of Landscape Research》 2013年第Z2期1-4,共4页
Suzhou Sanjiaozui Wetland Park takes the protection of wetland eco-environment system as the core content,highlights regional characteristics of wetland landscapes,and designs leisure,entertainment,science popularizat... Suzhou Sanjiaozui Wetland Park takes the protection of wetland eco-environment system as the core content,highlights regional characteristics of wetland landscapes,and designs leisure,entertainment,science popularization and education projects according to the functional orientations and actual conditions.The design ensures the effective protection and reasonable utilization of wetland resources. 展开更多
关键词 URBAN wetland PARK ECOLOGICAL protection planning and design
下载PDF
Nitrogen Biological Cycle Characteristics of Seepweed(Suaeda salsa) Wetland in Intertidal Zone of Huanghe(Yellow) River Estuary 被引量:10
19
作者 SUN Zhigao MOU Xiaojie +6 位作者 SUN Jingkuan SONG Hongli YU Xiang WANG Lingling JIANG Huanhuan SUN Wanlong SUN Wenguang 《Chinese Geographical Science》 SCIE CSCD 2012年第1期15-28,共14页
From April 2008 to November 2009,the nitrogen(N) cycle of plantsoil system in seepweed(Suaeda salsa) wetland in the intertidal zone of the Huanghe(Yellow) River estuary was studied.Results showed that soil N had sig-n... From April 2008 to November 2009,the nitrogen(N) cycle of plantsoil system in seepweed(Suaeda salsa) wetland in the intertidal zone of the Huanghe(Yellow) River estuary was studied.Results showed that soil N had sig-nificant seasonal fluctuations and vertical distribution,and the net N mineralization rates in topsoil were significantly different in growing season(p < 0.01).The N/P ratio(9.87 ± 1.23) of S.salsa was less than 14,indicating that plant growth was limited by N.The N accumulated in S.salsa litter at all times during decomposition,which was ascribed to the N immobilization by microbes from the environment.Soil organic N was the main N stock of plant-soil system,accounting for 97.35% of the total N stock.The N absorption and utilization coefficients of S.salsa were very low(0.0145 and 0.3844,respectively),while the N cycle coefficient was high(0.7108).The results of the N turnovers among compartments of S.salsa wetland showed that the N uptake amount of aboveground part and root were 7.764 g/m2and 4.332 g/m2,respectively.The N translocation amounts from aboveground part to root and from root to soil were 3.881 g/m2 and 0.626 g/m2,respectively.The N translocation amount from aboveground living body to litter was 3.883 g/m2,the annual N return amount from litter to soil was more than 0.125(-) g/m2(minus represented immobilization),and the net N mineralization amount in topsoil(0-15 cm) in growing season was 1.190 g/m2.The assessment of N biological cycle status of S.salsa wetland indicated that N was a very important limiting factor and the ecosystem was situated in unstable and vulnerable status.The S.salsa was seemingly well adapted to the low-nutrient status and vulnerable habitat,and the N quantitative relationships determined in the compartment model might provide scientific base for us to reveal the special adaptive strategy of S.salsa to the vulnerable habitat in the following studies. 展开更多
关键词 土壤有机氮 环境微生物 湿地植物 黄河河口 潮间带 循环特征 碱蓬 珠江口
下载PDF
Study on Building and Modeling of Virtual Data of Xiaosha River Artificial Wetland 被引量:1
20
作者 Qun Miao Lei Bian +1 位作者 Xipeng Wang CHang Xu 《Journal of Environmental Protection》 2013年第1期48-50,共3页
From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project ... From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project of Xinxuehe artificial wetland as reference. The virtual data of quantity and quality of inflow and the quality of outflow of Xiaosha River artificial wetland are built up according to the running experience, forecasting model and theoretical method of the reference project as well as the comparison analysis of the similarity and difference of the two example projects. The virtual data are used to study the building of forecasting model of BP neural network of Xiaosha River artificial wetland. 展开更多
关键词 Xiaosha river artificial wetland VIRTUAL data BP NEURAL network
下载PDF
上一页 1 2 208 下一页 到第
使用帮助 返回顶部