[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for t...[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for the effects of their growth-promoting activities on the germination and growth of tomato plants.The bacteria with growth-promoting activity were preliminarily identified.[Result]Totally 59 endophytic bacterial strains were isolated from roots and stems of tomatoes,of which 4 showed significantly growth-promoting activity to germination and growth of tomato.The results suggest that these strains are endowed with the potential capability of growth-promoting.[Conclusion]The endophytic bacteria with growth-promoting activity were found among the isolates from tomato plants.This provided a good foundation for utilization of these bacteria with growth-promoting activity.展开更多
[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promo...[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promoting effects of bacterial suspension ~ff endophytic bacteria Itb57 and Itb295 on tobacco seedling un- der different treatment modes were studied using potting method in greenhouse. The antagonistic action of bacterial suspension of endophytic bacteria Itb57 and Itb295 on Phytophthora nicotianae, Alternaria alternata and Botrytis cinerea were measured by duel culture method. [ Result] Bacterial suspensions of enduphytic bacteria Itb57 and Itb295 had certain growth-promoting effects on tobacco seedling, which could significantly increase the fresh weight and dry weight in aerial part; the growth-promoting effect of soaking + spraying and irrigating treatment was the best. Itb57 strain had good antagonistic action against P. nicotianae. A. alterna- ta and B. cinerea, while Itb295 strain only had good antifungal effect against P. nicotianae. [ Conclusion] The results provided basis for the study and application of tobacco endophytic bacteria strains Itb57 and Itb295 in biocontrol of tobacco diseases.展开更多
Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathoge...Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.展开更多
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos...Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.展开更多
Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current stud...Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb.ex Boiss.grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance.Bacteria were isolated from the roots and the shoots of S.rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene.RFLP(Restriction Fragment Length Polymorphism)analysis was conducted to eliminate similar isolates.Results showed that the isolates from the roots of S.rosmarinus belonged to the genera Rothia,Kocuria,Pseudomonas,Staphylococcus,Paenibacillus and Brevibacterium.The bacterial isolates from the shoots of S.rosmarinus belonged to the genera Staphylococcus,Rothia,Stenotrophomonas,Brevibacterium,Halomonas,Planococcus,Planomicrobium and Pseudomonas,which differed from those of the roots.Notably,Staphylococcus,Rothia and Brevibacterium were detected in both roots and shoots,indicating possible migration of some species from roots to shoots.The root-associated bacteria showed higher levels of IAA(indole-3-acetic acid)synthesis compared with those isolated from the shoots,as well as the higher production of ACC(1-aminocyclopropane-1-carboxylate)deaminase.Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.展开更多
Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecolo...Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.展开更多
Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of en...Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of endophytes on halophytes under saline-alkali stress.In this study,an endophytic bacterium strain HK1 isolated from halophytes was selected to infect Suaeda glauca under pH(7 and 8)and salinity gradient(150,300 and 450mmolL^(-1)).Strain HK1 was identified as Pantoea ananatis and it had ability to fix nitrogen,dissolve inorganic phosphorus and produce indole-3-aceticacid(IAA).The results showed that strain HK1 could promote the growth of S.glauca seedings when the salinity was less than 300mmolL^(-1),in view of longer shoot length and heavier fresh weight.The infected plants could produce more proline to decrease the permeability of cells,which content increased by 26.2%–61.1%compared to the non-infected group.Moreover,the oxidative stress of infected plants was relieved with the malondialdehyde(MDA)content decreased by 16.8%–32.9%,and the peroxidase(POD)activity and catalase(CAT)activity increased by 100%–500%and 6.2%–71.4%,respectively.Statistical analysis revealed that increasing proline content and enhancing CAT and POD activities were the main pathways to alleviate saline-alkali stress by strain HK1 infection,and the latter might be more important.This study illustrated that endophytic bacteria could promote the growth of halophytes by regulation of osmotic substances and strengthening antioxidant activities.This finding would be helpful for the bioremediation of coastal soil.展开更多
Background Microbial communities in different plant compartments are relatively independent entities.However,the influence of environmental factors on the microbial community in different compartments of periglacial p...Background Microbial communities in different plant compartments are relatively independent entities.However,the influence of environmental factors on the microbial community in different compartments of periglacial plants remains unclear.In this study,we quantified the bacterial communities in the rhizosphere soil,as well as root and leaf endosphere compartments of a periglacial plant,Potentilla fruticosa var.albicans,using high-throughput DNA sequencing.Moreover,we evaluated the impacts of habitat types(glacier terminus zone,moraine ridge,and alpine meadow)on the bacterial community in different plant compartments of Potentilla fruticosa var.albicans.Results Our results showed that habitat type had a significant effect on the alpha diversity(Chao1 richness)of endophytic bacteria,but not on the rhizospheric bacteria.The community composition of rhizospheric and endophytic bacteria was significantly different across the three habitats,and habitat type had a greater effect on the endophytic bacteria than on rhizospheric bacteria.The contribution of rhizosphere soil to the root and leaf endophytes decreased with the transformation of habitats from glacier terminus zone to alpine meadow.In contrast,host selection pressure sequentially increased from the glacier terminus zone to the moraine ridge to the alpine meadow.Furthermore,we found that the bacterial co-occurrence network in the alpine meadow was more modular but had lower complexity and connectedness than that in the glacier terminus zone.The bacterial community was governed primarily by stochastic processes regardless of habitat type.Conclusion This study reveals that the diversity and composition of endophytic bacteria associated with Potentilla fruticosa var.albicans are more affected by habitat types than that of rhizospheric bacteria.Our study also demonstrates that the assembly patterns and co-occurrence patterns of bacterial communities associated with Potentilla fruticosa var.albicans vary by habitat type.These results advance the current understanding of community assembly and ecological interactions of microbial communities associated with periglacial plants.展开更多
Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concent...Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concentration. The aim of this study was to analyse the root length growth by the promoting effect of indole acetic acid producers phytobacteria with ACC deaminase activity, on inoculated seeds of Lens esculenta as synergistic effect on root elongation. In this study, although the roots of L. esculenta seedlings do not show a significant promotion, these phytobacteria could be recommended to treat plants analyzing their added inoculum to increase plant biomass and retard the effect of ethylene on cultures supplied with Tryptophan and ACC.展开更多
【目的】分析中川208四个器官(根、茎、叶、花)的细菌群落多样性与物种组成,为利用中川208内生细菌资源提供科学依据。【方法】以中川208的根、茎、叶、花为研究对象,采用高通量测序与生物信息学分析方法,解析中川208不同器官内生细菌...【目的】分析中川208四个器官(根、茎、叶、花)的细菌群落多样性与物种组成,为利用中川208内生细菌资源提供科学依据。【方法】以中川208的根、茎、叶、花为研究对象,采用高通量测序与生物信息学分析方法,解析中川208不同器官内生细菌的群落结构与物种组成,探讨植物养分特征对优势细菌菌群的调控作用。【结果】(1)从中川208四种样品中共获得5460条特征序列(amplicon sequence variants:ASVs),归属于19门、72纲、161目、285科和389属。(2)各样本的细菌群落多样性为根>茎≥花>叶。Beta多样性和聚类分析表明,中川208的根和叶内生细菌群落组成较相似,与花和茎有明显区别。(3)物种组成上,根、茎、叶内以变形菌门和放线菌门相对丰度最高,花中以厚壁菌门和拟杆菌门的相对丰度最高。LEfSe分析结果表明,中川208不同器官中的细菌群落构成在属水平上存在显著差异性,特别是细菌属不动杆菌、短波单胞菌、异根瘤菌、芽孢杆菌、金黄杆菌、肠杆菌、另枝菌、毛螺菌、普拉梭菌、瘤胃球菌和Rosenbergiella的相对丰度在茎、叶、花内差异显著。(4)冗余分析表明,烟株总N(R2=0.730, P <0.001)、总糖(R2=0.883, P <0.001)和Mg(R2=0.907, P <0.01)含量与各器官中的优势细菌群落分布密切相关。【结论】中川208内生细菌群落多样性自根依次向花、茎、叶呈递减趋势,且不同器官中的内生细菌群落在物种组成上具有明显差异性。中川208植物器官中存在多种显著富集的细菌菌群,值得进一步研究与开发利用。展开更多
Objective: Paris polyphylla var. yunnanensis, one of the important medicinal plant resources in Yunnan,China, usually takes 6–8 years to be harvested. Therefore, it is urgent to find a method that can not only shorte...Objective: Paris polyphylla var. yunnanensis, one of the important medicinal plant resources in Yunnan,China, usually takes 6–8 years to be harvested. Therefore, it is urgent to find a method that can not only shorten its growth years, but also improve its quality. In this study, we examined the effects of a combination treatment of arbuscular mycorrhizal fungi(AMF) and plant growth-promoting endophytes(PGPE)and drought stress on the accumulation of saponins in it.Methods: P. polyphylla var. yunnanensis was infected with a mixture of AMF and PGPE under drought stress. The content of saponins, as well as morphological, physiological, and biochemical indicators, were all measured. The UGTs gene related to saponin synthesis was obtained from transcriptome data by homologous comparison, which were used for RT-PCR and phylogenetic analysis.Results: Regardless of water, AMF treatment could infect the roots of P. polyphylla var. yunnanensis, however double inoculation with AMF and PGPE(AMF + PGPE) would reduce the infection rate of AMF. Plant height, aboveground and underground fresh weight did not differ significantly between the single inoculation AMF and the double inoculation treatment under different water conditions, but the inoculation treatment significantly increased the plant height of P. polyphylla var. yunnanensis compared to the noninoculation treatment. Single inoculation with AMF considerably increased the net photosynthetic rate,stomatal conductance, and transpiration rate of P. polyphylla var. yunnanensis leaves under various water conditions, but double inoculation with AMF + PGPE greatly increased the intercellular CO2concentration and chlorophyll fluorescence parameter(Fv/Fm). Under diverse water treatments, single inoculation AMF had the highest proline content, whereas double inoculation AMF + PGPE may greatly improve the amount of abscisic acid(ABA) and indoleacetic acid(IAA) compared to normal water under moderate drought. Double inoculation AMF + PGPE treatment improved the proportion of N, P, and K in the rhizome of P. polyphylla var. yunnanensis under various water conditions. Under moderate drought stress,AMF + PGPE significantly enhanced the contents of P. polyphylla var. yunnanensis saponins I, II, VII, and total saponins as compared to normal water circumstances. Farnesyl diphosphate synthase(FPPS),Geranyl pyrophosphate synthase(GPPS), Cycloartenol synthase(CAS), and Squalene epoxidase(SE1) were the genes that were significantly up-regulated at the same time. The amount of saponins was favorably linked with the expression of CAS, GPPS, and SE1. Saponin VI content and glycosyl transferase(UGT)010922 gene expression were found to be substantially associated, as was saponin II content and UGT010935 gene expression.Conclusion: Under moderate drought, AMF + PGPE was more conducive to the increase of hormone content, nutrient absorption, and total saponin content in P. polyphylla var. yunnanensis, and AMF + PGPE could up regulate the expression of key genes and UGTs genes in one or more steroidal saponin synthesis pathways to varying degrees, thereby stimulating the synthesis and accumulation of steroidal saponins in the rhizome of P. polyphylla var. yunnanensis. The combination of AMF and PGPE inoculation, as well as adequate soil drought, reduced the buildup of saponins in P. polyphylla var. yunnanensis and increased its quality.展开更多
基金Supported by the Science Foundation for the Introduced High-level Talents in Anhui Agricultural University(yj2008-1)~~
文摘[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for the effects of their growth-promoting activities on the germination and growth of tomato plants.The bacteria with growth-promoting activity were preliminarily identified.[Result]Totally 59 endophytic bacterial strains were isolated from roots and stems of tomatoes,of which 4 showed significantly growth-promoting activity to germination and growth of tomato.The results suggest that these strains are endowed with the potential capability of growth-promoting.[Conclusion]The endophytic bacteria with growth-promoting activity were found among the isolates from tomato plants.This provided a good foundation for utilization of these bacteria with growth-promoting activity.
基金Supported by Natural Science Foundation of Chongqing City(CSTC,2009BB1294)~~
文摘[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promoting effects of bacterial suspension ~ff endophytic bacteria Itb57 and Itb295 on tobacco seedling un- der different treatment modes were studied using potting method in greenhouse. The antagonistic action of bacterial suspension of endophytic bacteria Itb57 and Itb295 on Phytophthora nicotianae, Alternaria alternata and Botrytis cinerea were measured by duel culture method. [ Result] Bacterial suspensions of enduphytic bacteria Itb57 and Itb295 had certain growth-promoting effects on tobacco seedling, which could significantly increase the fresh weight and dry weight in aerial part; the growth-promoting effect of soaking + spraying and irrigating treatment was the best. Itb57 strain had good antagonistic action against P. nicotianae. A. alterna- ta and B. cinerea, while Itb295 strain only had good antifungal effect against P. nicotianae. [ Conclusion] The results provided basis for the study and application of tobacco endophytic bacteria strains Itb57 and Itb295 in biocontrol of tobacco diseases.
基金financially supported by the Third Xinjiang Comprehensive Scientific Expedition (2022xjkk020605)the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program) (2020E01047)supported by the Introduction Project of High-level Talents in Xinjiang Uygur Autonomous Region, China
文摘Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.
文摘Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.
基金the Eurasia Program of the Norwegian Centre for Cooperation in Education(CPEA-LT-2016/10095)the German Academic Exchange Service(DAAD)the President's International Fellowship Initiative of the Chinese Academy of Sciences(2018VBA002S).
文摘Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb.ex Boiss.grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance.Bacteria were isolated from the roots and the shoots of S.rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene.RFLP(Restriction Fragment Length Polymorphism)analysis was conducted to eliminate similar isolates.Results showed that the isolates from the roots of S.rosmarinus belonged to the genera Rothia,Kocuria,Pseudomonas,Staphylococcus,Paenibacillus and Brevibacterium.The bacterial isolates from the shoots of S.rosmarinus belonged to the genera Staphylococcus,Rothia,Stenotrophomonas,Brevibacterium,Halomonas,Planococcus,Planomicrobium and Pseudomonas,which differed from those of the roots.Notably,Staphylococcus,Rothia and Brevibacterium were detected in both roots and shoots,indicating possible migration of some species from roots to shoots.The root-associated bacteria showed higher levels of IAA(indole-3-acetic acid)synthesis compared with those isolated from the shoots,as well as the higher production of ACC(1-aminocyclopropane-1-carboxylate)deaminase.Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.
基金Supported by Hebei Provincial Key R&D projects(21327306D)Hebei Provincial Key R&D projects(20326807D)Chengde Science and Technology Research and Development Planning Project(202103B003).
文摘Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.
基金supported by the Shandong Province’s Natural Science Foundation(No.ZR2019MD033).
文摘Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of endophytes on halophytes under saline-alkali stress.In this study,an endophytic bacterium strain HK1 isolated from halophytes was selected to infect Suaeda glauca under pH(7 and 8)and salinity gradient(150,300 and 450mmolL^(-1)).Strain HK1 was identified as Pantoea ananatis and it had ability to fix nitrogen,dissolve inorganic phosphorus and produce indole-3-aceticacid(IAA).The results showed that strain HK1 could promote the growth of S.glauca seedings when the salinity was less than 300mmolL^(-1),in view of longer shoot length and heavier fresh weight.The infected plants could produce more proline to decrease the permeability of cells,which content increased by 26.2%–61.1%compared to the non-infected group.Moreover,the oxidative stress of infected plants was relieved with the malondialdehyde(MDA)content decreased by 16.8%–32.9%,and the peroxidase(POD)activity and catalase(CAT)activity increased by 100%–500%and 6.2%–71.4%,respectively.Statistical analysis revealed that increasing proline content and enhancing CAT and POD activities were the main pathways to alleviate saline-alkali stress by strain HK1 infection,and the latter might be more important.This study illustrated that endophytic bacteria could promote the growth of halophytes by regulation of osmotic substances and strengthening antioxidant activities.This finding would be helpful for the bioremediation of coastal soil.
基金funded by the National Natural Science Foundation of China(Grant Nos.91851207,42171138)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(Grant No.2019QZKK0503).
文摘Background Microbial communities in different plant compartments are relatively independent entities.However,the influence of environmental factors on the microbial community in different compartments of periglacial plants remains unclear.In this study,we quantified the bacterial communities in the rhizosphere soil,as well as root and leaf endosphere compartments of a periglacial plant,Potentilla fruticosa var.albicans,using high-throughput DNA sequencing.Moreover,we evaluated the impacts of habitat types(glacier terminus zone,moraine ridge,and alpine meadow)on the bacterial community in different plant compartments of Potentilla fruticosa var.albicans.Results Our results showed that habitat type had a significant effect on the alpha diversity(Chao1 richness)of endophytic bacteria,but not on the rhizospheric bacteria.The community composition of rhizospheric and endophytic bacteria was significantly different across the three habitats,and habitat type had a greater effect on the endophytic bacteria than on rhizospheric bacteria.The contribution of rhizosphere soil to the root and leaf endophytes decreased with the transformation of habitats from glacier terminus zone to alpine meadow.In contrast,host selection pressure sequentially increased from the glacier terminus zone to the moraine ridge to the alpine meadow.Furthermore,we found that the bacterial co-occurrence network in the alpine meadow was more modular but had lower complexity and connectedness than that in the glacier terminus zone.The bacterial community was governed primarily by stochastic processes regardless of habitat type.Conclusion This study reveals that the diversity and composition of endophytic bacteria associated with Potentilla fruticosa var.albicans are more affected by habitat types than that of rhizospheric bacteria.Our study also demonstrates that the assembly patterns and co-occurrence patterns of bacterial communities associated with Potentilla fruticosa var.albicans vary by habitat type.These results advance the current understanding of community assembly and ecological interactions of microbial communities associated with periglacial plants.
基金Authors are grateful to the Research Projects:SIP:20131494 of the Secretaría de Investigación y Posgrado del I.P.N.ISITDF/325/11 AREAS PRIORITARIAS-IPN and COFAA-IPN,EDI-IPN,SNI-CONACYT fel-lowships
文摘Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concentration. The aim of this study was to analyse the root length growth by the promoting effect of indole acetic acid producers phytobacteria with ACC deaminase activity, on inoculated seeds of Lens esculenta as synergistic effect on root elongation. In this study, although the roots of L. esculenta seedlings do not show a significant promotion, these phytobacteria could be recommended to treat plants analyzing their added inoculum to increase plant biomass and retard the effect of ethylene on cultures supplied with Tryptophan and ACC.
文摘【目的】分析中川208四个器官(根、茎、叶、花)的细菌群落多样性与物种组成,为利用中川208内生细菌资源提供科学依据。【方法】以中川208的根、茎、叶、花为研究对象,采用高通量测序与生物信息学分析方法,解析中川208不同器官内生细菌的群落结构与物种组成,探讨植物养分特征对优势细菌菌群的调控作用。【结果】(1)从中川208四种样品中共获得5460条特征序列(amplicon sequence variants:ASVs),归属于19门、72纲、161目、285科和389属。(2)各样本的细菌群落多样性为根>茎≥花>叶。Beta多样性和聚类分析表明,中川208的根和叶内生细菌群落组成较相似,与花和茎有明显区别。(3)物种组成上,根、茎、叶内以变形菌门和放线菌门相对丰度最高,花中以厚壁菌门和拟杆菌门的相对丰度最高。LEfSe分析结果表明,中川208不同器官中的细菌群落构成在属水平上存在显著差异性,特别是细菌属不动杆菌、短波单胞菌、异根瘤菌、芽孢杆菌、金黄杆菌、肠杆菌、另枝菌、毛螺菌、普拉梭菌、瘤胃球菌和Rosenbergiella的相对丰度在茎、叶、花内差异显著。(4)冗余分析表明,烟株总N(R2=0.730, P <0.001)、总糖(R2=0.883, P <0.001)和Mg(R2=0.907, P <0.01)含量与各器官中的优势细菌群落分布密切相关。【结论】中川208内生细菌群落多样性自根依次向花、茎、叶呈递减趋势,且不同器官中的内生细菌群落在物种组成上具有明显差异性。中川208植物器官中存在多种显著富集的细菌菌群,值得进一步研究与开发利用。
基金supported by grants from Major Special Projects of the Ministry of Science and Technology(No.2021yfd10002022021YFD1601003)+1 种基金the Key R&D program of Yunnan Province(No.202103AC100003)National Natural Science Foundation of China(No.31860075).
文摘Objective: Paris polyphylla var. yunnanensis, one of the important medicinal plant resources in Yunnan,China, usually takes 6–8 years to be harvested. Therefore, it is urgent to find a method that can not only shorten its growth years, but also improve its quality. In this study, we examined the effects of a combination treatment of arbuscular mycorrhizal fungi(AMF) and plant growth-promoting endophytes(PGPE)and drought stress on the accumulation of saponins in it.Methods: P. polyphylla var. yunnanensis was infected with a mixture of AMF and PGPE under drought stress. The content of saponins, as well as morphological, physiological, and biochemical indicators, were all measured. The UGTs gene related to saponin synthesis was obtained from transcriptome data by homologous comparison, which were used for RT-PCR and phylogenetic analysis.Results: Regardless of water, AMF treatment could infect the roots of P. polyphylla var. yunnanensis, however double inoculation with AMF and PGPE(AMF + PGPE) would reduce the infection rate of AMF. Plant height, aboveground and underground fresh weight did not differ significantly between the single inoculation AMF and the double inoculation treatment under different water conditions, but the inoculation treatment significantly increased the plant height of P. polyphylla var. yunnanensis compared to the noninoculation treatment. Single inoculation with AMF considerably increased the net photosynthetic rate,stomatal conductance, and transpiration rate of P. polyphylla var. yunnanensis leaves under various water conditions, but double inoculation with AMF + PGPE greatly increased the intercellular CO2concentration and chlorophyll fluorescence parameter(Fv/Fm). Under diverse water treatments, single inoculation AMF had the highest proline content, whereas double inoculation AMF + PGPE may greatly improve the amount of abscisic acid(ABA) and indoleacetic acid(IAA) compared to normal water under moderate drought. Double inoculation AMF + PGPE treatment improved the proportion of N, P, and K in the rhizome of P. polyphylla var. yunnanensis under various water conditions. Under moderate drought stress,AMF + PGPE significantly enhanced the contents of P. polyphylla var. yunnanensis saponins I, II, VII, and total saponins as compared to normal water circumstances. Farnesyl diphosphate synthase(FPPS),Geranyl pyrophosphate synthase(GPPS), Cycloartenol synthase(CAS), and Squalene epoxidase(SE1) were the genes that were significantly up-regulated at the same time. The amount of saponins was favorably linked with the expression of CAS, GPPS, and SE1. Saponin VI content and glycosyl transferase(UGT)010922 gene expression were found to be substantially associated, as was saponin II content and UGT010935 gene expression.Conclusion: Under moderate drought, AMF + PGPE was more conducive to the increase of hormone content, nutrient absorption, and total saponin content in P. polyphylla var. yunnanensis, and AMF + PGPE could up regulate the expression of key genes and UGTs genes in one or more steroidal saponin synthesis pathways to varying degrees, thereby stimulating the synthesis and accumulation of steroidal saponins in the rhizome of P. polyphylla var. yunnanensis. The combination of AMF and PGPE inoculation, as well as adequate soil drought, reduced the buildup of saponins in P. polyphylla var. yunnanensis and increased its quality.