Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t...Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.展开更多
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ...Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise ...Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.展开更多
The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria,...The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.展开更多
Garlic is a most important medicinal herb belonging to the family Liliaceae. Both its leaves and bulb are edible. The current study was based on evaluating the growth promoting potential of plant growth promoting rhiz...Garlic is a most important medicinal herb belonging to the family Liliaceae. Both its leaves and bulb are edible. The current study was based on evaluating the growth promoting potential of plant growth promoting rhizobacteria (PGPR) on garlic (Allium sativum L.) growth and biochemical contents. Garlic cloves were inoculated with 3 kinds of PGPRs, Pseudomonas putida (KX574857), Pseudomonas stutzeri (Kx574858) and Bacillus cereus (ATCC14579) at 10<sup>8</sup> cells/mL prior to sowing. Under natural conditions, plants were grown in the net house. The PGPR significantly enhanced % germination, leaf and root growth and their biomass also increased the diameter of bulb and fresh and dry weight. The flavonoids, phenolics, chlorophyll, protein and sugar content were also significantly increased due to PGPR inoculation. The Pseudomonas stutzeri was found most effective for producing longer leaves with moderate sugar, high flavonoids (129%) and phenolics (263%) in bulb over control (Tap). The Pseudomonas putida exhibited a maximum increase in bulb diameter and bulb biomass with maximum phenolics and flavonoid contents.展开更多
The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alte...The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alternative in agriculture. PGPRs have beneficial effects not only in promoting plant growth but also have shown their potential as biological control agent, being able to inhibit plant pathogens. Here, we investigated the use of PGPR <em>Paraburkholderia</em> sp. strain SOS3 to provide disease protection in rice (<em>Oryza sativa</em> L.). The antagonistic activity of SOS3 against five fungal pathogens of rice was assessed by dual culture on plates and on rice seedlings. The results showed that on plate assay, SOS3 inhibits the growth of <em>Curvularia lunata</em>, <em>Rhizoctonia solani</em>, <em>Pyricularia oryzae</em>, <em>Helminthosporium oryzae</em>, and <em>Fusarium moniliforme</em> by 17.2%, 1.1%, 8.3%, 32.5%, and 35.4%, respectively. When inoculated on rice seeds, SOS3 promotes seed germination and significantly reduces disease symptoms in plants infected with <em>R. solani</em>. These results suggest that SOS3 has a great potential to be used in rice agriculture to combat the “Sheath Blight” disease.展开更多
文摘Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.
基金the National Key Research and Development Program of China(No.2017YFE0119100)the National Natural Science Foundation of China(No.42107513)the Key Research and Development Program of Gansu(No.21YF5FA151)。
文摘Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
基金supported by SEP,Grant DSA/103.5/15/10976 and VIEP-BUAP,Grant 20 Sub-Program。
文摘Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.
基金Supported by the Science and Technology Project of Nanping Tobacco Company(201203)~~
文摘The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.
文摘Garlic is a most important medicinal herb belonging to the family Liliaceae. Both its leaves and bulb are edible. The current study was based on evaluating the growth promoting potential of plant growth promoting rhizobacteria (PGPR) on garlic (Allium sativum L.) growth and biochemical contents. Garlic cloves were inoculated with 3 kinds of PGPRs, Pseudomonas putida (KX574857), Pseudomonas stutzeri (Kx574858) and Bacillus cereus (ATCC14579) at 10<sup>8</sup> cells/mL prior to sowing. Under natural conditions, plants were grown in the net house. The PGPR significantly enhanced % germination, leaf and root growth and their biomass also increased the diameter of bulb and fresh and dry weight. The flavonoids, phenolics, chlorophyll, protein and sugar content were also significantly increased due to PGPR inoculation. The Pseudomonas stutzeri was found most effective for producing longer leaves with moderate sugar, high flavonoids (129%) and phenolics (263%) in bulb over control (Tap). The Pseudomonas putida exhibited a maximum increase in bulb diameter and bulb biomass with maximum phenolics and flavonoid contents.
文摘The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alternative in agriculture. PGPRs have beneficial effects not only in promoting plant growth but also have shown their potential as biological control agent, being able to inhibit plant pathogens. Here, we investigated the use of PGPR <em>Paraburkholderia</em> sp. strain SOS3 to provide disease protection in rice (<em>Oryza sativa</em> L.). The antagonistic activity of SOS3 against five fungal pathogens of rice was assessed by dual culture on plates and on rice seedlings. The results showed that on plate assay, SOS3 inhibits the growth of <em>Curvularia lunata</em>, <em>Rhizoctonia solani</em>, <em>Pyricularia oryzae</em>, <em>Helminthosporium oryzae</em>, and <em>Fusarium moniliforme</em> by 17.2%, 1.1%, 8.3%, 32.5%, and 35.4%, respectively. When inoculated on rice seeds, SOS3 promotes seed germination and significantly reduces disease symptoms in plants infected with <em>R. solani</em>. These results suggest that SOS3 has a great potential to be used in rice agriculture to combat the “Sheath Blight” disease.